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Abstract

The ISTNanosat-1 is a double CubeSat which is being developed by students and teachers from

IST/TULisbon. This nano-satellite is composed by different subsystems that are fitted together into the

flight module. This flight module carry all the required technology to maximize the spacecraft mission

lifetime and provide the required logistics to the intended scientific mission aboard. The scientific exper-

iment is responsible to make some measurements related to the Flyby Anomaly phenomenon and will

take 1U (10cm cube) of free cargo space.

The Heart unit, whose software was developed in this dissertation, presents a solution to manage

the remote interactions with the Ground Station through the space-link. This unit is also responsible for

satellite housekeeping. The solution comprises two different subsystems: Digital communications and

Command & Data Handling.

The digital communication subsystem implements the required network functionalities e.g. allow-

ing a ground operator to invoke remote commands in a reliable way onto a specific subsystem or in the

satellite as a whole. This subsystem also provides the satellite general health status information (teleme-

try) periodically in the downlink taking into account maximum Ground Stations compatibility. Since the

ISTNanosat will carry a tiny camera aboard, the Communications solution also implements a transport

protocol that enable the imagery transmission from the spacecraft, abstracting all the details on this pro-

cess. All the network functionalities were implemented taking into account the intrinsic characteristics

typically found on Low Earth Orbit space-links such as: intermittent and disruptive connections; low and

very asymmetric throughputs.

The Command & Data Handling is a critical subsystem due to its responsibilities as the on-board

information orchestrator. To enhance its operation correctness it relies on a Real-Time Operating System

to implement the satellite housekeeping and internal communications tasks when it enters in the safe-

mode profile.

Finally, the Heart unit solution was deployed using a AT91RM9200 and the moteISTs5++ as proto-

type platforms. The final solution was submitted to a set of performance and quality tests highlighting the

solution compact design, low power consumption and ARM processor under-utilization even in stressful

cases.
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Resumo

O ISTNanosat-1 é um CubeSat duplo que tem vindo a ser desenvolvido por alunos e professores no

IST. Este nano-satélite é composto por vários sub-sistemas instalados no módulo de voo. Este módulo

transporta toda a tecnologia necessária para maximizar o tempo da missão e disponibilizar a logı́stica

necessária à missão cientifica. A experiência cientifica é responsável por fazer algumas medições

relacionadas com o fenómeno anormal Flyby e ocupará 1U (cubo de 10cm) de espaço útil dentro do

satélite.

A unidade Heart cujo software foi desenvolvido nesta dissertação, apresenta uma solução para

gestão das interações remotas com a estação terrestre através do link espacial. Esta unidade é também

responsável pela gestão interna do satélite. A solução engloba dois sub-sistemas: Comunicações

digitais e sistema de comando e tratamento de dados.

O sub-sistema de comunicação digital implementa as funcionalidades de rede necessárias e.g. per-

mitir ao operador na Terra invocar comandos remotamente de uma forma fiável num sub-sistema es-

pecifico ou no satélite em geral. Este sub-sistema também disponibiliza informação sobre o estado de

operação do satélite (telemetria) periodicamente no downlink, tendo em conta a máxima compatibili-

dade com as estações terrestres. Como o ISTNanosat irá transportar uma pequena câmera a bordo,

o sub-sistema de comunicações implementa um protocolo de transporte que permite a transmissão de

imagens do satélite, abstraindo todos os detalhes deste processo. Todas as funcionalidades de rede

foram implementadas tendo em atenção as caracterı́sticas das ligações tipicamente encontradas em

Low Earth Orbit, tais como: ligações intermitentes e com grande perturbação; throughputs baixos e

muito assimétricos.

O sub-sistema de comando e tratamento de dados é considerado crı́tico devido às suas responsabil-

idades como orquestrador principal da informação a bordo. Para melhorar a correcção da sua operação

este sub-sistema utiliza um sistema operativo de tempo real para implementar as tarefas de gestão do

satélite e comunicações internas quando este entra em modo de segurança.

Finalmente, a solução foi ainda instalada sobre as plataformas de prototipagem AT91RM9200 e

moteISTs5++. Esta foi ainda sujeita a um conjunto de testes de desempenho e qualidade que destacam

o seu design compacto, baixo consumo energético e sub-utilização do processador ARM mesmo sobre

grande stress.
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1
Introduction

Space exploration is always related with large investments from governments and/or private insti-

tutions. This represents a limitation to technological advances, since the development is confined to

some organizations with the required resources. In mid-1960 the Orbiting Satellite Carrying Amateur

Radio (OSCAR) group was created, having as a major goal the construction and launch of amateur

satellites. Two years later, the first amateur satellite called OSCAR I was launched. In 1969, the OSCAR

project merged with COMSAT Amateur Radio Club, forming the Radio Amateur Satellite Corporation -

also known as AMSAT - thus enabling the OSCAR 5 launch [4]. In 1981 the UO-9 - UoSAT-OSCAR 9

- or University of Surrey’s UoSAT-1 was launched. This satellite, marked the beginning of universities’s

mostly funded projects [4] [5]. Since then, dozens of projects have been developed within the academic

community. It is estimated that, on average, 12 satellites are launched by universities per year [5].

In 1999 the CubeSat project was started. This collaborative project, initially between the Califor-

nia Polytechnic State University (Cal Poly) and the Standford University’s Space Systems Development

Laboratory (SSDL), aims at the standardization of pico-satellites design. This standardization increases

the space accessibility by allowing cost reduction, development time decrease, and keeping frequent

launches. A Cubesat is a cube with 10cm - (10x10x10cm) with up to 1.33kg - or 1U [6]. These cubes, can
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be grouped easily in order to form larger satellites, for example 2U (10x10x20cm) or 3U (10x10x30cm).

It is estimated that in 2010, 250 CubeSats were built in 1U, 2U and 3U formats [7]. The satellites devel-

oped under this specification - CubeSat Design Specification (CDS) - in addition to carry all necessary

technology to its orbit operation, they can be designed to transport more specific scientific experiments.

One clear example of this is the NASA GeneSat-1, which has a bacteria miniature laboratory inside with

the capacity of detecting proteins - products of specific genetic activity [8]. CubeSats are commonly

delivered in Low Earth Orbit (LEO), defined as 160-2000km above the Earth’s surface [9].

To encourage the development of academic projects, some technical support and founding initiatives

starting to appear. These initiatives, mainly focus on launch opportunities into rocket’s remaining free

cargo or collective launching coordination. One example of this projects is NASA ELaNa1. With the

easy launch of very small and cheap units it is possible to start engineering nano and pico satellite

constellations (also known as Swarms) where each unit is apart hundreds of kilometres. The Swarm2

project from Student Space Exploration and Technology Initiative (SSETI) aims to deploy this concept in

a real scenario.

Apart from the CubeSat community developments, other working groups have been formed in or-

der to solve more generic problems. For example, to address the problems associated with long dis-

tance communications, keeping in mind the lack of efficiency of terrestrial protocols in such scenarios,

new communication paradigms were forced to emerge; a very significant example is Delay Tolerant

Network (DTN). This new communication approach, has been catapulted by the Delay Tolerant Net-

working Research Group3. The DTN proposed architecture is an evolution from the initial proposed

InterPlaNetary (IPN) Internet architecture [10]. ”The IPN is a member of a family of emerging Delay

Tolerant Networks” [11]. The Internet Society IPN Special Interest Group4 is responsible for IPN devel-

opments. The IPN is already included in the NASA Mars mission program [12].

In 2010, the ISTNanosat-1 project was born, presenting itself as a candidate to be the first Por-

tuguese satellite entirely made inside an academic context. In this project, minimum use of Commercial

Off-The-Shelf (COTS) components is planned or, in other words, preference will be given to academic

developed technology. This nano-satellite 5 will be built over CubeSat specifications in a 2U struc-

ture. One Cubesat unit (1U) will be used to accommodate the Flight Module. This flight module en-

compass all the required spacecraft subsystems, responsible for e.g. satellite position determination

and actuation, communications, energy gathering and storage. The Heart Unit is responsible for both

digital communication processing and central decision logic orchestration. The Heart functionalities

1http://www.nasa.gov/offices/education/centers/kennedy/technology/elana_feature.html accessed on 15-09-

2012
2http://sseti.net/swarm/ accessed on 15-09-2012
3http://www.dtnrg.org accessed on 15-09-2012
4http://www.ipnsig.org accessed on 15-09-2012
5Satellite with a wet mass between 1 and 10 kg
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are implemented across two different subsystems, the Communications (COM) and Command & Data

Handling (C&DH). The ISTNanosat-1 will also carry one scientific experiment that will study the flyby

anomaly6 phenomenon.

The ISTNanosat-1 has already demonstrated the intent to integrate collaborative projects such as the

QB50 project7. The participation on such projects will increase the ISTNanosat-1 success hypothesis

since they provide, for example, launch opportunities and knowledge exchange between other universi-

ties and entities.

1.1 Motivation and Objectives

The Heart unit is responsible for ISTnanosat-1 control, operation management and digital commu-

nications handling. The whole solution encompasses two different subsystems, the Command & Data

Handling (C&DH) and the Communications (COM). The C&DH subsystem is responsible for processing

data gathered from on-board components, such as magnetometers, sun sensors, gyroscopes etc. acting

as a critical subsystem due to its responsibilities in keeping the satellite in proper operation. The COM

subsystem is responsible for digital communications through the space link (link between satellite and

ground station). This subsystem should take into account the high processing requirements imposed by

the required exported network functionalities.

Taking into account the large budget involved in a spatial project, it is necessary to develop very

robust and reliable systems, in order to avoid jeopardizing the entire investment due to a particular com-

ponent fault. With this requirement in mind, the Heart module architecture needs to be redundant being

adaptable enough to allow different faulty scenarios, in order to keep the general satellite performance

as good as possible, avoiding that specific faults can turn into global failures.

During the development and deployment phases, it is necessary to keep in mind the project costs

and the physical tight constraints expected such as the lack of energy or cargo space aboard. Here,

following, as much as possible, software development standards for critical scenarios one can enhance

the developed solution final quality.

Beyond the imposed constraints to this space navigation device, it is important to endue the com-

munications with tolerance to delay, disruptions, lack of bi-directionality or highly asymmetric links, etc..

Thus, the proposed network stack solution needs to take these peculiarities into account.

Finally, the Heart unit solution needs be tested in a quasi-realistic environment. The designed test

set will provide performance results, allowing conclusions about Heart feasibility.

6http://istnanosat.ist.utl.pt/index.php?n=Main.Mission accessed on 15-09-2012
7https://qb50.eu/ accessed on 15-05-2012
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1.2 Contributions

The dissertation contributions can be listed as follows:

Portable COM subsystem software - The developed COM software solution can run on top of different

hardware platforms. This portability was achieved by extending a meta-package system, which

allows a full parametrized embedded system.

Network protocol stack extended - Since the used network stack on space-link lacks of intended

link-layer protocol support, the main network protocol implementation was extended by adding a

new layer two protocol driver.

New transport protocol for file transmission over space-link - In order to provide reliable imagery

transmission from ISTNanosat-1 to Earth Ground Station (GS) a new simple transport protocol

designated as Tolerant-CSP (T-CSP) was developed. It is used on top of the deployed network

stack code to perform the required fragmentation and segment recovery functionalities.

Unified embedded communications service - The COM software solution relies in one developed

onboard network application (designated as Primary Satellite Interface Software (PriSIS)) which

unifies all the satellite communications and remote GS command processing. The GS software

was also developed.

Compact and energy aware solution - This work presents a C&DH and COM hardware/software

solution which meet the imposed power requirements. This was achieved mainly due to a large

effort on overall functionality code compression.

RTOS support for C&DH prototyping board - One free Real-Time Operating System (RTOS) port

with an open-source toolchain was tailored to support the C&DH development hardware platform.

This was achieved by developing a new Hardware Abstraction Layer (HAL) for the used RTOS

port.

1.3 Dissertation organization

This dissertation is composed of 6 chapters. The second chapter brings a summary of the state of

the art on CubeSat emergent technologies and concepts.

The third chapter details the conceptual view on Heart unit architecture. It also enumerates the

requirements and goals to be achieved in its design. The hardware and software design directives are

also presented.

In the chapter 4, the implementation details and problems are addressed.
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Chapter 5 documents the tests performed and its results are discussed and analysed. The performed

tests aims the performance evaluation as well as code quality assessment.

Finally in chapter 6, the work conclusions are discussed, presenting some future work improve-

ments.
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2
State of the art

With the launch of the first artificial satellite - Sputnik I [13] - in October 4th, 1957, the space age

began [4]. Somehow influenced by this event and with prior knowledge about radio electric sciences

radio amateurs launched the first amateur spacecraft in 1961. This satellite, named OSCAR I, was very

successful and demonstrated that amateurs are capable of designing, building and tracking satellites.

The amateur’s ability to coordinate with government launch agencies and collect/process scientific and

engineering related information was also proven [4].

2.1 Cubesat Generations and Missions

Since the first OSCAR was launched, many amateur satellites were built relying on different de-

sign strategies. With the help of the CubeSat project, the non-consensual design methodologies were

standardised and became widely adopted by amateur satellite developers. The first CubeSat genera-

tion should have ended when the viability of this standard was proven. Projects like Delfi-C3 or CUTE-I

(OSCAR 55) are successful examples of this standardization process. After the first CubeSat generation

a second one followed which focus on on-board enhanced technologies, e.g. more accurate navigation
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systems or better power handling. The NASA NanoSail-D2 demonstrated the successful deployment of

solar sail propulsion [14], clearly fitting it into this generation. The future generation will perhaps improve

the interaction ability in large distributed systems - swarms - and/or open the possibility for CubeSats

to integrate IPN network(s). The QB50 project, aims to be unique in establishing a space network at

around 300 km altitude [15], using the CubeSat standard. This project can be considered as one of the

third generation precursors.

These very small - nano and pico class - satellites are used to accomplish a wide spectrum of

objectives. About 70% are used for technology demonstration although only 14% have only this as

an objective. Operational use, like scientific measurements or radio communications experiments, is

another common mission goal. About 52% of missions take these kind of purposes into account. More

than a half (52%), are used for educational purposes. The planned mission duration is, on average,

eight months and if the launch is successful, around 48% of the missions fully succeed [1]. Figure 2.1

summarises these facts.

(a) (b)

Figure 2.1: Mission objectives and full success rate, adapted from [1]

According to Figure 2.1(b), it is possible to conclude that pico-nano satellite missions are risky and

difficult, but pursue challenging objectives. Also, the Figure 2.1(a) shows that nano-satellites can be

used as new technologies test platform.

2.2 Common subsystems

CubeSats are typically structured into task independent modules called subsystems. Those are the

Physical Structure, C&DH, COM, Attitude Determination and Control System (ADCS) and Electrical

Power System (EPS).
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2.2.1 Physical Structure

The CubeSat primary structure typically represents 15% to 20% of the total satellite mass [16].

This structure needs to be built bearing in mind the requirements described in the CubeSat Design

Specification (CDS) document. Those requirements, emphasize the CubeSats design conventions,

such as dimensions, mass1, wear and electrical isolation. Suggestions for the main structure and rails

material - Aluminum 7075 or 6061-T6 - are also given [6]. The Aluminium is often used due to its mass,

ductility, strength, low-cost, and ease of manufacturing [16]. CubeSat developers are encouraged to

comply with the Poly Picosatellite Orbital Deployer (P-POD). This structure - P-POD - is one of the

CubeSat standard deploy mechanisms which acts as physical interface between the spacecraft and the

Launch Vehicle (LV) [17].

Figure 2.2(a)2 illustrates a CubeSat in/outside view and Figure 2.2(b)3 shows the P-POD interface.

(a) (b)

Figure 2.2: CubeSat (a) and P-POD (b)

In order to interconnect the different subsystems inside the physical structure, the PC/104 bus is

commonly used.

Besides the widely use of the single unit CubeSat form factor (1U), other geometries are used in

nano/pico satellite missions. As Figure 2.3 [1] illustrates, structures based on sphere, cylinder, prism,

cone, rectangular and other 1U CubeSat extensions are also adopted options, although less used.

1e.g. single units shall not exceed 1.33kg and triple unit CubeSats, 4.0kg
2Retrieved from http://www.space.t.u-tokyo.ac.jp/cubesat/news/img/021231l.jpg in 28-11-2011
3Retrieved from http://www.pe0sat.vgnet.nl/wp-content/uploads/2011/11/P-Pod-Launcher.jpg in 28-11-2011
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Figure 2.3: Pico-Nano satellite used form factors

2.2.2 Electrical Power System - EPS

All CubeSats require some type of electrical power management system - EPS. This system is

considered critical since the most common cause of problems resides in power subsystem failures [18].

The EPS is subdivided into the following modules [19]:

Energy Harvesting - Responsible for gathering energy. Solar cells are considered the preferred power

source collector due to its cost and reliability [19]. The most used type of cells is based on Gallium

Arsenide (GaAs), since it provides higher conversion efficiency, up to 30%, and is widely available.

About 60% of pico/nano satellite mission use GaAs, 14% use Silicon, 2% use Copper indium

gallium (di)selenide (CIGS) and about 24% don’t use any type of solar cell at all. [1]. As an

example, in a 1U CubeSat surface (10x10x10cm) with the commercial 28.3% efficient Spectrolabs

solar cells, 12.27W can be generated and in a larger form factor like 2U it is possible to gather

20.45W [20].

Energy storage - Responsible for preserving the captured energy in excess for future use. Recharge-

able batteries are the most common solution to store the spare energy produced by the Energy

Harvesting module. This component is vital to maintain the spacecraft operationality when solar

energy radiation is not available - e.g. during an eclipse4. The main battery type used is based on

Li-ion - 66% -, followed by Nickel–Cadmium (NiCd) - 16% and Lithium-ion Polymer (Li-Po) - 12%.

The only nano-satellite known which does not carry any battery is Delfi-C3 [1].

Power Distribution - Is responsible for providing power switching, fault detection, correction and isola-

tion mechanisms [19].

4For example, when the satellite goes into Earth’s shadow and stops receiving solar radiation.
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Power regulation and control - The most used energy conversion methods - raw available power

from solar cells to power on the spacecraft bus - are Direct Energy Transfer (DET) and Peak Power

Tracking (PPT). DET is a very simple and reliable method and takes the power at a predetermined

voltage point on the current-voltage (IV) characteristic of solar cells and shunts excessive power.

The PPT method just follows the IV-curve from the open-circuit voltage with DC-DC converters,

but can lead to problems if there is an extremely large instantaneous current surge [1].

The Maximum Power Point Tracking (MPPT) is the most elegant method, since it will retrieve the

maximum power from solar cells, but it is also more complex. About 47% of missions use PPT,

46% use DET and only 7% use MPPT as conversion method [1] [21].

2.2.3 Attitude Determination and Control System - ADCS

The ADCS have two main functions, measuring and determining the spacecraft orientation - Attitude

Determination - and guiding it according to a given direction - Control System [22]. Both functions are

vital to maintain reliable power generation and maximize the communications performance [1] because

they highly depend on proper satellite5 directivity.

Two major families of attitude control techniques coexist: passive and active. The passive ones,

take advantage of basic physical principles and/or forces occurring in the spacecraft, while the active

schemes directly sense the attitude and supply a torque command to change it as required [23]. Most of

the first CubeSats used passive stabilization mechanisms [16]; however today, the active solutions are

becoming more interesting. About 40% of the nano-pico satellite missions use active control and almost

the same amount uses passive mechanisms. Slightly more than 20% do not use any attitude control [1].

The technologies used to modify the spacecraft attitude - Attitude Control mechanisms - are summa-

rized as follows:

Reaction Wheel - This actuator allows the satellite to change its angular momentum without using

rockets or other reaction devices. The AAUsat-2 and CanX-2 launched in 2008 were the first

CubeSats with this kind of technology. It can be built with DC-micro-motors and an inertia wheel

[22].

Magnetorquers - Simple but with low accuracy when compared to momentum exchanged devices. It

acts by producing a controllable magnetic momentum which interacts with the Earth’s magnetic

field to produce the mechanical torque. Magnetic torques are light, simple and low-power consum-

ing [22].

Thruster - Used to produce torques onto the satellite with low thrust propellant or electric systems.

5e.g. antennas and solar panels
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Its expensive, heavy and require extra space to store the propellant. Its usage is not common in

nano-satellites but they are starting to gather developers attention [22].

Momentum Wheel - It is a small circular flywheel and can be used to change the satellite attitude due

to the preservation of the angular momentum [24]. This actuator is mainly used for spacecraft

gyroscopic stabilization6 [22].

Spin-stabilized - The basic principle behind this reaction mechanism is routing high pressure gas

into a couple of small tubes whose exhaust ports, located at the edge of the CubeSat, produce

opposite tangential thrust vectors around the spacecraft spin axis [25].

Fluid Damper - This mechanism can be implemented using a toroid filled with viscous liquid containing

a ball bearing. Due to spacecraft oscillations this ball is forced to travel through the liquid where

the vibrational energy is dissipated by viscous friction. This method can be useful to attenuate the

transients induced by deployments [26].

Three-axis Stability and Control was already used, e.g. in BeeSat, but it is technically and oper-

ationally more complex than spinners [27]. This technique can be achieved by torquing the CubeSat

using three microweels or magnetic coils and a gas cylinder powered microjet [25].

Fig. 2.4 illustrates the usage of on-board attitude actuators in pico/nano satellite missions, where is

possible to conclude that the most used actuators are the Passive Magnetic followed by Magnetorquers.

Figure 2.4: Attitude actuators usage, adapted from [1] .

The satellite orientation/position measurements can be obtained from embedded sensors, such as:

6Adjusting the angular or rotational movements
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Sun Sensors - The most widely used mechanism in attitude determination is Sun position measure-

ment [22]. The measurements made by these sensors are constrained by sun exposure availability.

In order to maximize the sensor exposure efficiency, they tend to be integrated into the satellite

solar panels. The CSTB1 is an example of this technique demonstration7.

Earth Sensors - This mechanism helps the orientation of the spacecraft relative to Earth, where the

detection of thermal radiation in the infra-red range is one of the strategies used. Another possible

approach is the thermal noise detection from a radio receiver. With horizon-crossing sensors

higher accuracy can be achieved, where each of the three orthogonal sensors scans a ring of

space and the found crossings of the horizon [28].

Magnetometers - These simple and light sensors, measures the local magnetic field and can be found

as Micro Electro-Mechanical Systems (MEMS). This sensors can be subjected to relevant errors

in special conditions like sun storms [22].

Rate Gyros/Gyroscopes - These sensors measure the spacecraft angular rate relative to inertial

space [23] and not the orientation itself [22]. Rate sensors are mainly used during fast attitude

changes, where numerical differentiation of reference measurements are no longer reliable [28].

Star Sensors - The Star tracker is an optical device that measure the stars positions using photo-

cells. These measurements are compared with a local database in order to determine the current

attitude. Although its good accuracy level, its size and weight typically represents an issue to

nanosatellites [22].

Figure 2.5 illustrates the on-board attitude sensors usage in pico/nano satellite missions. It is possible

to conclude that Sun sensor and Magnetometer are the most used ones.

7https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cstb1 accessed on 02-10-2012
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Figure 2.5: Attitude sensors usage, adapted from [1].

2.2.4 Command & Data Handling - C&DH

This subsystem is responsible for data storage (e.g. telemetry collected from on-board sensors),

autonomous operations management, and other operational events [29]. The latter comprise control

experiment execution and/or monitor and control of other subsystems, like ADCS, EPS, etc. [30]. The

C&DH Subsystem is the spacecraft’s central decision unit.

Typically the C&DH relies on a Microcontroller Unit (MCU) to process data.

In order to connect different subsystems to C&DH, interfaces like Serial Peripheral Interface (SPI),

Inter-Integrated Circuit (I2C), Universal Synchronous/Asynchronous Receiver Transmitter (USART) [31],

Space Plug-and-Play Avionics (SPA) and Controller Area Network (CAN) can be used [1]. The I2C

is one of the most used and have the following advantages: it is widely available; it implements a

simple protocol and requires simple hardware; requires low power (typically 10mW) independent from

the number of nodes. However, I2C have some drawbacks such as low robustness, lack of bus protection

against bus capture, and no built-in error detection and correction (only acknowledgement) [32].

Section 2.3 brings out more detailed information about the C&DH subsystem.

2.2.5 Communications - COM

The communications involved in LEO satellites (such as CubeSats) have short communication oppor-

tunity windows (up to 15 minutes) relative to ground stations in a given area (footprint). The large com-

munication distances - from 500 to 900km [27] - are also an issue due to propagation delays involved.
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The usage of store-and-forward mechanisms and Ground Station Network (GSN) such as GENSO8 are

commonly used to overcome these limitations.

Communication subsystem handles the connections with ground stations and other satellites. Infor-

mation about spacecraft internal conditions, tracking guides (beacons), commands and generic informa-

tion (e.g. photos), are sent through the space links. Without the ability to communicate the spacecraft

becomes space junk in most cases. Hence, the mission success highly depends on the COM’s reliability.

This subsystem is mainly composed by transceivers, antennas - monopole or dipole - and sometimes

a MCU to handle the digital information. Both MCU and transceivers are very important parts of this

subsystem. There are three main transceiver types: COTS, modified COTS and custom-build. The

use of unmodified COTS simplifies the design but sometimes they require proprietary device specific

protocols and modulations. They are expensive, heavy, big and have thermal dissipation problems to

be used in CubeSats. In order to overcome these drawbacks some modifications (modified COTS) are

made by CubeSat developers, sometimes with the help from manufacturers. The Custom-build type

allows tighter requirements and functionality control, but due to difficulties in RF Board design it is less

successful. The Delfi-C3 carry its own transceiver built at transistor level [33].

Most of the CubeSats use frequencies allocated to radio amateur communication bands, but this

is not restrictive. Sensitive payloads that wish to use frequencies outside the amateur bands can ask

Federal Communications Commission (FCC) [16], European Conference of Postal and Telecommuni-

cations Administrations (CEPT) or ITU Radiocommunication Sector (ITU-R) for such assignment. The

Industrial, Scientific and Medical (ISM) bands are another alternative to radio amateur frequencies,

where the 2.4GHz band is sometimes used (e.g. GeneSat-1 or MAST [34]). The Ultra High Fre-

quency (UHF) band (from 300 MHz to 3 GHz) with digital modulation, namely GMSK, MSK, AFSK,

FSK or BPSK, is widely used with typical rates ranging from 1200 bit/s to 80 kbit/s. Inside the amateur

bands, the 437 MHz is the most desirable band to ensure the downlink9 communication. The Very High

Frequency (VHF) (from 30 to 300 MHz) and S-bands (from 2 to 4 GHz) are also used. VHF allows

data rates up to 9600 bit/s while S-Band may permit data-rates in the order of 256 kbit/s. About 75% of

pico-nano satellites missions use UHF, ∼20% use VHF and ∼15% uses S-Band [1].

2.3 Command & Data Handling and Communication subsystems

This section will focus simultaneously on architectures of both C&DH and COM subsystems together

due to its main implementation similarities.

8http://www.genso.org/
9link between satellite and the Ground Station
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2.3.1 Hardware architectures

It is possible to characterize a particular subsystem by its processing architecture. The processing

architectures used in CubeSats can be summarized as follows:

Microcontroller-based - This strategy relies on a MCU (or several) to assure the required on-board in-

telligence. A MCU is a self-contained system with a processor, memory and peripherals. In many

cases it contains all that is needed to run a piece of software [35]. Vast solutions from different

vendors are available. MCUs like PIC, MSP430, ARM and AVR are widely seen in CubeSat mis-

sions. For example, the Jugnu project considers two MCU, MSP430 and ARM7 core AT91SAM7x,

in its setup [36].

Microprocessor-based - This approach relies on a general purpose processor, such as Intel 80C186,

interconnecting external peripherals and memory [35]. The Trailblazer-2 CubeSat is an example

of this design strategy where it is planned that C&DH subsystem will use a Texas Instruments

OMAP3530 processor [37].

SBC-based - Single-board Computer (SBC) as the name suggests is a computer completely built

on a circuit board. An example of SBC usage is the QuakeSat project. This satellite relies on

Diamond Systems Prometheus SBC, which contains a low power ZFx86 CPU-on-a-chip, Ethernet,

serial ports, IDE, analog-digital I/O and PC/104 support [38]. The Cool LiteRunner 2 SBC from

Lippert Embedded, is another SBC option for CubeSats [39]. Probably the most common COTS

manufacturer for CubeSat platforms is Pumpkin, which sells SBC solutions based on e.g. MSP430

or dsPIC MCUs.

Specific purpose - This hardware architecture is used in missions which have designed the processing

unit according strictly to the mission’s requirements or in order to serve very peculiar purposes. For

example, the Los Alamos National Laboratory (LANL) CubeSat Reconfigurable Computer (CRC)

project employs reconfigurable computing using Field-Programmable Gate Array (FPGA) [40].

Different hardware and software strategies are used in CubeSats. The major processing units used

have low power consumption profiles, such as TI MSP430. These low power processing MCUs, impose

a very restrictive and requirement-specific programming strategies.

Some projects cope with system faults using redundancy strategies over several subsystems, such

as EPS by duplicating the battery and/or solar cell sets [41], or in C&DH for example, by giving the

processing responsibility to other subsystems (e.g. Delfi-n3Xt plan implement the basic C&DH functions

at COM MCU) [32].
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2.3.2 Software architectures and operating systems

Besides the processing architectures described in the last section, a couple of software design strate-

gies are possible to follow.

C programming - This approach allows the developer to build the entire solution from scratch with high

hardware control. Also, since the entire software solution is coded taking into account strictly the

intended specifications, the code becomes cleaner and therefore smaller and faster.

General Purpose Embedded systems - Some CubeSats use generic OS’s, such as Linux, running in

its MCUs. With this philosophy the code for low-level management of hardware, drivers, communi-

cation and processes can be reused/tailored. The support for modern languages, such as Python,

can also be granted [42]. General purpose systems require a more robust MCU than in a clean

slate approach using simple C programming.

Real Time Operating System - RTOS deals with rigid time constraints, where the processing must

be done within defined periods. There are two main RTOS types, soft and hard. Soft RTOS

allows task prioritization where real-time tasks are assigned to higher scheduling priority. Beyond

this, Hard RTOS must guarantee that real-time tasks are computed within its acceptance time

limits. Task preemption, minimal interrupt and dispatch delay must be also employed in the task’s

scheduler to meet the real-time tasks requirements [43]. Commercial and opensource RTOS are

used in CubeSats. The most common commercial solution is Salvo10 RTOS from Pumpkin Inc..

Other free RTOS systems such as FreeRTOS11, Contiki12 or ChibiOS/RT13 can also be used.

Apart from pure C programming, proprietary and opensource RTOS for constrained environments,

such as Salvo (KySat-1), FreeRTOS (PW-Sat) or µCLinux (UWE-1), are becoming very popular in Cube-

Sat standard. Both the RTOS COTS vendors [44] and the main opensource projects, like FreeRTOS,

tend to ignore software standardization like IEEE std 1003.13-1998. This standard aims the definition of

Real-time environments based on ISO/IEC 9945 standards [45]. Also, it seems none of the most popu-

lar Operating Systems for CubeSats are ready for any software certification such as DO-178B14. These

standards/certifications, even non mandatory for CubeSat projects, can be useful to avoid software de-

sign problems and control the software’s life cycle. The C and assembly languages are commonly used

in CubeSat software development. The use of programming languages for safety-critical environments,

such as ADA15, are very incipient.
10http://www.pumpkininc.com/content/salvo.htm
11http://www.freertos.org/
12http://www.contiki-os.org/
13http://www.chibios.org/
14Software Considerations in Airborne Systems and Equipment Certification
15Structured, statically typed, imperative, wide-spectrum, and object-oriented Programming language used in e.g. avionics,

rockets, banking, etc.
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2.4 Communication protocols

The digital protocols used in CubeSats are quite basic. The most widely used is the Amateur Packet

Radio Link Layer Protocol (AX.25), sometimes together with some improvements such as Simple Radio

Link Layer (SRLL). Network protocols such as CubeSat Space Protocol (CSP) also exist. This layer

3 protocol allows remote operation over a specific subsystem from the GS. Other protocols such as

Saratoga or Delay Tolerant Network (DTN) may be a possible solution for cubesat applications. Actuality

the extra overhead imposed by these protocols discourage its use in the common cubesat links.

2.4.1 Amateur X.25 (AX.25)

This protocol is based on X.25 and specifies both physical and data link layers from the OSI stack

model [2]. The AX.25 is very similar to X.25 except in the address fields size (which was expanded

to accommodate the nodes callsign), and the incorporation of UI frames. This type of frames brings a

solution for broadcast-oriented communications such as those over a radio medium. Note that X.25 are

intended to be used in point-to-point links. The link error detection and framing functions are adopted

from High-Level Data Link Control (HDLC) [46]. AX.25 supports connection-oriented and connectionless

modes [2].

Figure 2.6 illustrates the AX.25 functionalities mapped to correspondent OSI layers.

Figure 2.6: AX.25 Protocol reference, adapted from [2]

Data-Link Service Access Point (DLSAP) serves as service interface to upper layers. The Seg-

menter, Data Link and Management Data Link modules represent each AX.25 link, which will be multi-

plexed through physical link by Link Mux. The Segmenter function splits the information in small chunks

if the original data exceeds the frame payload size. The Data Link component provides connection

management (establish and release). The Management Data-link provides parameter negotiation ability

between stations and, finally, the physical module handles the radio transmitter/receiver functionality [2].

This protocol uses three general frame formats, Information frame (I frame), shown in Fig. 2.7, Un-

numbered frame (U frame) and Supervisory frame (S frame).
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Figure 2.7: I frame format [2].

The address field indicates the destination/origin address, each one formed by an amateur callsign

(6 ASCII characters maximum), Secondary Station Identifier (SSID) (4 bits) and another 4 reserved

and control bits. This field can accommodate 2 (112 bits) or 4 (224 bits) callsigns. The 112 bits wide

address field is used when the communication is done directly between source and destination peers,

while the 224 bit length field is used when the communication is done using repeaters in-between [2]. If

255 bytes are considered for Maximum Transmission Unit (MTU) - maximum data inside the Info field -

without using repeaters, the UI frame efficiency is ∼92.7%. In the design phase of this protocol, some

concerns were raised about excessive frame overhead due to complete callsign transmission - 14 bytes

only for source and destination addresses. This design option proved to be a good decision, because it

avoids the need for centralized address assignment process and allows a straightforward way for node

identification [46]. The control field indicates the frame type and the Protocol IDentifier (PID), the carried

protocol. The Frame-Check Sequence (FCS) is used by the receiver to validate the frame correctness.

U and S frames have the same format as the I frame, except the omission of the PID field.

The AX.25 protocol is widely used but has poor performance when facing error-prone channels

[47]. This lack of performance over noisy links has special impact in these low bandwidth scenarios

where retransmissions are not desirable. The FX.25 extension proposes the addition of a Forward Error

Correction (FEC) to the standard AX.25 packet, allowing error correction in the receiver. The FX.25

frame structure keeps interoperability with pure AX.25 systems.

2.4.2 Simple Radio Link Layer (SRLL)

This protocol was developed to compensate the lack of error correction functionalities in AX.25.

It specifies fixed length frames - 28 bytes - and has the capacity to recover up to three lost bits per

frame [48]. The use of fixed size frames avoids errors in frame detection caused by bit flipping. A 32bit

Pseudo-Noise (PN) code is used for frame detection [49]. Fig. 2.8 depicts the SRLL frame format.

Figure 2.8: SRLL frame format

The processed data field is composed by user data and a generated error correction code (8 bytes)

based on Hamming code. This field is later subjected to an interleaving operation [49].
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This protocol is used, for example, in Cute-1.7+APDI (CO-56) and Cute-1.7+APDII (CO-65) [33].

2.4.3 CubeSat Space Protocol (CSP)

The CSP16 provides the functionalities associated to layers three and four of the OSI model [50].

Its main feature is the existence of a routed network approach in which every satellite subsystem (or

the Terminal Node Controller (TNC) connected to the mission control computer located at the ground

station) can be a network node. Each network node is addressed by a unique identifier, representing

the location of the node17. The routing information is pre-programmed in the source code of each node

before the deployment. In the latest CSP version the address was increased in order to allow 32 distinct

addresses [51].

Fig. 2.9 represents the concept, where a unique identifier is assigned to each CubeSat subsystem

(COM - 1; C&DH - 2; ADCS - 3; EPS - 4). Also, the TNC and the control computer have unique

addresses. For example, if one CSP packet is received by the COM with source address CSP - 9 (TNC)

and with destination address CSP - 2 (C&DH) the COM subsystem, based on this information one can

conclude two important facts: The packet arrives from ground segment (9-15); and needs to be routed

through the local bus (I2C in Fig. 2.9) to some node attached to the space segment (C&DH in this case).

Figure 2.9: CSP routed network

The CSP implementation maintained by Gomspace, keeps both layers, Router Core (OSI layer 3)

and Transport extensions (layer 4), as open-source under LGPL licence. On one hand, the Router

Core layer is responsible for making routing decisions and buffer management. On the other hand, the

Transport layer provides a UDP functionality extension which consists of a direct implementation of RFC

908 (Reliable Datagram Protocol (RDP)) and RFC 1151 (RDP version 2). The RDP gives the missing

packet re-ordering and retransmission capabilities [51].

16https://github.com/GomSpace/libcsp
17e.g. space segment (address range 0-7) or ground segment (address range 9-15)
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Fig. 2.10 shows the CSP packet structure.

Figure 2.10: CSP packet

The overhead imposed by the CSP header is 4 bytes and no trail is used. The options field carries

information about the usage of CRC, Hash-based Message Authentication Code (HMAC) and eXtended

Tiny Encryption Algorithm (XTEA) security mechanisms and finally RDP.

2.4.4 Delay Tolerant Network (DTN) architecture and Bundle Protocol (BP)

Taking into account the unsuitability of the terrestrial-oriented protocols for space communications,

a DTN architecture (RFC 4838) was proposed. These protocols do not provide resilience to long end-

to-end path loss, heterogeneous networks, long propagation delays, lack of directional paths or high bit

error rates. The approach taken by the DTN architecture is to transport Application Data Units (ADU)

into DTN generic data containers - ”bundles” - in order to be forwarded by DTN nodes. Each DTN node

is uniquely identified by its Endpoint Identifier (EID), which is syntactically represented in a Uniform

Resource Identifier (URI) format (described in RFC3986) [10]18. The DTN nodes also have persistent

bundle storage, e.g. disk, flash memory, etc., to allow a more robust store-and-forward mechanism

against disruption caused by lack of connectivity or spacecraft problems.

The entire forwarding intelligence of this overlay network - DTN - sits on top of a wide range of

possible underlying protocols. The DTN infrastructure interacts with this underlying protocols using a

convergence layer, which acts like a protocol specific interface [10].

Fig. 2.11 exemplifies this layer interaction in presence of a heterogeneous environment. The connec-

tion between DTN Node1 (e.g. control computer located in ground station) and Node2 (e.g. TNC) can

be, for example, IP over Ethernet while the connection between Node2 and Node3 (e.g. CubeSat) is a

space link using AX.25. When the control application installed at the Node1 sends a bundle containing,

for example, an attitude command to Node3 it forwards the bundle to the BP layer. The BP layer will

route the bundle (based on its destination EID) to the respective next-hop (Node2 in this case) using the

appropriate Convergence Layer (CL) (TCPCL). The Node2 will receive the bundle in its BP coming from

the same CL as Node1. Then the Node2 BP will perform a new route decision (in this case, forward it to

the Node3 via AX.25 link using the AX.25CL). If the link between Node2 and 3 becomes very disruptive

the BP implementation at Node2 can, for example, automatically schedule new a retransmission.

18e.g. dtn://istnanosat-1.int/communications
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Figure 2.11: Example of DTN usage on a heterogeneous environment.

The BP brings the DTN architecture services (communication adaptability in stressed environments)

by allowing [52]:

• Custody-based retransmission;

• Intermittent connectivity adaptation;

• Scheduled, predicted and opportunistic connectivity;

• Late binding of overlay endpoints identifiers to Internet addresses;

Some BP software implementations are already under development, such as DTN219, ION20, Postel-

lation21 or IBR-DTN22.

2.4.5 Saratoga

Saratoga is a simple UDP-based transfer protocol and was designed to transfer, in a reliable way,

data over disruptive and very asymmetric connections. Since 2004, Saratoga has been used to transfer

image files over IP from Disaster Monitoring Constellation (DMC) satellites to Earth. The motivation

behind this protocol design is the need to fully use the downlink capacity in a short time window of

communication opportunities. It implements the negative-ack Automatic Repeat reQuest (ARQ) as loss

recovery method and FEC, both to ensure the transmission reliability. It can be used over IPv4 or

IPv6. [3].

Each Saratoga node acts like a simple file server. Different file and directory operations are available,

such as: pull - ”download”; push - ”upload”, directory listing and deletion request. Nodes announce its

presence by sending a BEACON packet over reserved IPv4 multicast address. The file operations
19http://sourceforge.net/projects/dtn/files/DTN2/
20https://ion.ocp.ohiou.edu/
21http://postellation.viagenie.ca/
22http://www.ibr.cs.tu-bs.de/projects/ibr-dtn/
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between nodes are made using transactions [3]. Fig. 2.12 illustrates the exchanged messages in one

get transaction.

Figure 2.12: Example of saratoga transaction get , adapted from [3].

Alternatively, Saratoga can be used to exchange DTN bundles between DTN nodes acting as a

convergence layer (described in subsection 2.4.4). When the UDP convergence layer is used in BP, it is

presumed that each bundle will fit into a single UDP packet and no reliable delivery is given. Saratoga

is an option (apart from Licklider Transmission Protocol (LTP)) to give support to bundle fragmentation

with reliable delivery [53].

2.4.6 Consultative Committee for Space Data Systems (CCSDS) - Standards

recommendations

The CCSDS organization formulates recommendations to address generic problems found in space

data systems. Standard recommendations are detailed in a so called blue book, where the main goal is

to promote systems interoperability and cost reduction. Individual projects can select specific subset of

features to meet their requirements [54] such as Packet telemetry or Space Communications Protocol

Specifications (SCPS)23. On one hand, the packet telemetry recommendation describes data structures

used to transport information from space vehicle to data sinks on the ground [55]. On the other hand,

the SCPS is a protocol stack where the primary objective is the reliable information transfer from/to

space end systems [56]. SCPS protocol stack is composed by SCPS Network Protocol (SCPS-NP),

SCPS Security Protocol (SCPS-SP), SCPS Transport Protocol (SCPS-TP), and SCPS File Transfer

Protocol (SCPS-FP) [57].

Some CubeSat projects, such as Dynamic Ionosphere Cubesat Experiment (DICE) or BeeSat, use

the CCSDS standards.

23http://www.scps.org/
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2.4.7 Discussion

Nowadays CubeSats tend not to use very sophisticated/complex communication protocols. Most of

the CubeSat projects rely on the simple AX.25 and a Continuous Wave (CW) beacon for communica-

tions. Only a few experiments with SRLL were made (in Cute-1.7+APDI and II CubeSats). Also, some

projects support the CCSDS standard. In practice, the use of IP based solutions on CubeSats are very

incipient or even not used at all.

Besides some developments in CSP implementation source code, its usage in real scenarios remains

immature and it is waiting for the AAUSAT3 launch to prove its design viability.

Protocols such as BP or Saratoga are only seen in larger satellites, such as UK-DMC, and represent

a big challenge to CubeSat due to this standard typical limitations (available processing power, data

storage, throughput, etc.) to process these exigent protocols.

Apart from the solutions for Earth-Satellite link, some research was made for Inter-Satellite Links

(ISL), but the applicability for current solutions for CubeSats is not clear. For example, proposals based

on modifications of the traditional IEEE 802.11 were already made [58].

Since CubeSats operates over a inherently broadcast/shared medium it is necessary to employ com-

munication coordination to allow collision resilience and low level station addressing. The Media Access

Control (MAC) strategy widely used in CubeSat scenarios is based on Frequency Division Multiple Ac-

cess (FDMA) / Frequency-Division Duplexing (FDD). The FDMA/FDD technique assigns two unique

frequencies to each peer, one for downlink and another for uplink. Obviously this strategy requires co-

operation between all frequency assignment entities (described in Subsection 2.2.5) and the CubeSat

developers to ensure the uniqueness of these frequencies. Besides the FDMA access method, the Code

Division Multiple Access (CDMA) is starting to gain some attention, but the research on this technique

in CubeSats is incipient.

Fig. 2.13 illustrates the protocols described in this section, according to its OSI reference.

2.5 Trends/Hot topics

Today CubeSats are becoming very interesting platforms for technology research and demonstration.

One particular CubeSat project can rely on knowledge from several science fields spread among multi-

disciplinary working teams. A lot of research has been done in order to improve the CubeSat navigation

systems and in the scientific experiments carried by these satellites.

The M-Cubed and the CINEMA are examples of cutting edge technology projects in science experi-

ment advances. The M-Cubed (Michigan Multipurpose MiniSatellite) Project has as main goal the raise

of the CubeSats technology limit in Earth imaging field. The CINEMA relies on CubeSat standard for

housing a very advanced miniaturized sensors for space weather monitoring [59].
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Figure 2.13: Protocol reference.

There are some projects like PhoneSat or CubeSail that aim at the enhancement of CubeSat fun-

damental subsystems. The NASA PhoneSat demonstrates the viability of general purpose hardware

usage. This satellite relies all of its operations on a commercial Android smartphone24 integrated into

the CubeSat chassis. The CubeSail will try to be the first solar sail demonstration using a CubeSat

structure [60].

2.6 Conclusion

The CubeSat platform is becoming popular in academic projects that intent to develop new solutions

for spatial sciences. The advances made in all subsystems regarding the first CubeSat projects are per-

ceptible. It is also evident that the low available power budget, strongly limits the satellite functionalities

design. This limitation is related to the small satellite surface (low solar radiation exposure) and the EPS

available technology - mainly in solar cells efficiency. Some vendors - e.g. ClydeSpace - are developing

some new energy systems solutions, which use high efficiency cells and deployable solar panels.

In the C&DH and COM subsystems, a lot of engineering have been made, but redundant solutions

are incipient. The redundant functionalities are hard to implement because the component duplication

mean more power consumption and more complexity. Also, the available space inside the CubeSat limits

the use of duplicated components. The size problem can be minimized using philosophies like those

proposed in this document for ISTNanosat-1 Heart unit - task migrations between different subsystems.

The available throughput in CubeSat space links also imposes a big limitation to new communication

protocols (such as BP) testing and development. Besides this, there is no substantial research available

24http://open.nasa.gov/plan/phonesat/
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for ISL solutions. With the new opportunities for formation flying, such as QB50 project25, aiming at

an international cubesat network of 50 satellites, the ISL questions are becoming very interesting for

CubeSats.

25https://qb50.eu/project.php
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3
Heart Architecture

ISTNanosat-1 Heart is the satellite central intelligence unit. It is responsible for onboard data pro-

cessing and handling the communications with Earth Ground Stations. It may be able to run the nec-

essary procedures for satellite housekeeping and other functional tasks. These procedures can be,

for example, image gathering, collect internal system performance information, or inject well formatted

telemetry information into the radio link.

The developed solution should take into account the high robustness patterns associated with these

very expensive (time and money) projects. This is important, because a simple system fault can have a

high cost.

3.1 Requirements and design goals

The project requirements are described hereafter. The first five items discuss the non-functional re-

quirements where the expected general satellite characteristics are presented. The remaining functional

requirements describe some specific system details.

Hardware suitability for space environments - The hardware solution should be robust against the
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expected environment up to 2000km1 above Earth surface. For example, large thermal amplitudes

may occur due to, for example, high solar radiation exposure. The Heart unit may also be prepared

for unexpected power interruptions which imply, for example, automatic system boot process when

the energy is re-established.

Available satellite payload capacity - The developed solution should be able to run on top of small

embedded systems in order to minimize the use of scarce satellite volume and weight capacity.

Therefore the Heart unit should have a light and compact design.

Energy consumption - The energy consumption of the whole Heart system is a crucial aspect. The

available on-board energy is very scarce. The solution should employ strategies that allow a

hardware/software compact design minimizing the required power consumption. The ISTNanosat-

1 project envisages ∼ 900mW for both C&DH and COM subsystem.

Reliability of the developed code - The developed software should be bug free. This means that

maximum compile time checks should be done as well as runtime operation validation. The runtime

operation checks includes memory leaks, input validations, buffer overflows, race conditions, etc..

Also the developed applications should be fast and compact. The code solution should be well

documented to allow work re-utilization from other projects/subsystems.

Heart redundancy - The on-board software solution should be flexible enough in order to raise the

Hearth success hypothesis when facing such highly error prone environments. This means that the

Heart Unit should employ a redundant strategy which allows as much as possible the minimization

of failure impact caused by some unexpected problems, such as lack of power energy or some

hardware glitch. The main philosophy of this redundant design should be in a graceful degradation

basis, when more and better functionalities are offered when everything works as expected, and

minor functions are available when some problems occur.

Safety-critical operation - The C&DH is the subsystem responsible for taking the principal decisions

aboard, e.g. change the spacecraft attitude or change the general operational behaviour. This

crucial role should be taken into account in its design.

Remote operation - The GS should be able to invoke remote tasks on the satellite in a reliable way

(acknowledged). The remote tasks can be for example beacon operation toggle, or image/file

transfer request. Both satellite side and GS side software should be developed.

Imagery gathering - The ISTNanosat-1 plans the use of a tiny camera on-board, installed on the

ADCS subsystem. It is important to endue the COM subsystem with the required features to allow

the download of the satellite stored images to the GS.
1Low Earth Orbit (LEO) typical maximum altitude
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Satellite traceability from GS and health report - The satellite should be traceable by a wide range

of GS. The most common strategy to employ this feature is periodically send a CW - Analog morse

code signal. This beacon also carries the on-board telemetry encoded. This telemetry can also be

transmitted using packet radio over the space-link containing the overall system status and perfor-

mance.

3.2 Design specifications

The Heart unit has the following pre-defined specifications. They ensure the Heart unit compatibil-

ity and design coherence with the global ISTNanosat project, which aims a redundant approach with

compatible communications between onboard subsystems.

Redundant connections - The Heart unit shall implement redundant connections between the C&DH

and the ADCS subsystem. This is useful when the primary communication bus stops working un-

expectedly. Therefore, the C&DH must use the secondary link to access sensor/actuator elements

keeping (the best as it can) proper satellite attitude when such error occur.

Redundant processors - In order to avoid complete operation cessation due to a particular processor

glitch, the Heart unit must include two processors in its design. These processors can be different

in terms of characteristics.

Redundant access to space-link communications - The Heart unit design shall implement redun-

dant connections to space-link communications. These redundant connections allow basic satellite

communication even when one of the subsystems stops working.

Standard inter-subsystem protocol - The communication between subsystems must take into ac-

count the compatibility with the protocols already defined by ISTNanosat-1 project. The major

protocol used for inter-subsystem communications is the I2C.

3.3 ISTNanosat-1 general architecture

This section will provide a brief overview of the foreseen ISTNanosat-1 general architecture, giv-

ing a global perspective of the Heart Unit in the satellite and its interconnections with the remaining

subsystems.

The ISTNanosat-1 is composed by two single cubesats grouped together, forming a 2U structure.

One cubesat (1U) will carry the Flight Module, which is responsible for accommodate all the required
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technology for proper satellite operation. Taking advantage of this complete navigation system, the

ISTNanosat-1 will also carry one Science Module, which will be responsible for some scientific measure-

ments related to the Flyby Anomaly2. As the functional unit, the scientific unit also have 1U reserved.

The Flight Module will carry the following subsystems: Sensor/actuator - ADCS; Energy - EPS;

Analog COM; C&DH and COM. The ISTNanosat-1 Heart Unit encompass two distinct subsystems: the

digital communications subsystem - COM - and the central intelligence subsystem - C&DH. Fig. 3.1(a)

represents the foreseen ISTNanosat-1 architecture, where the Fig. 3.1(b) shows the same architecture

in 3D view.

(a) (b)

Figure 3.1: ISTNanosat-1 generic architecture. 3.1(a) - flat view, 3.1(b) - 3D view

As Fig. 3.1 illustrates, every subsystem is inter-connected using the I2C protocol. This protocol is

transported on top of a PC/104 mechanical bus. The I2C protocol is used here because is an economic

and efficient way for inter-subsystem communication allowing a multi-master operation. Besides this,

the direct connection between the C&DH and ADCS can be used to avoid the primary communication

bus. This secondary connection will allow direct sensor data acquisition and actuation interaction from

C&DH, which can be useful if the primary bus (I2C over PC/104 interface) stops working. This means

that C&DH and ADCS have two redundant connections between them, one using the PC/104 system

bus and another using direct connection, both with the I2C protocol.

The ADCS subsystem will carry the following set of sensors:

Gyroscope - Responsible for spacecraft angular momentum measurements. These measurements

enhances the precision of the position prediction process.

2More detail about the scientific experiment can be found here: http://istnanosat.ist.utl.pt/index.php?n=Main.

Mission - accessed in 06-07-2012
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Horizon sensor - The spacecraft orientation relative to Earth is very useful for example, to keep a good

communication path towards the available GS. The Earth sensor will provide useful guides to

maximize e.g. the communications directivity.

Magnetometer - The proprieties about the magnetic fields around and inside the spacecraft are a

valuable information in the attitude determination process.

Sun-sensor - The Sun is the primary satellite energy source. Its major function is to provide reliable

readings about the direction of the solar exposure. The solar sensor integration into the solar cells

is still an open question.

Tiny CMOS camera - The use of an ultra small camera is under research. This camera will take pictures

from the satellite viewpoint;

GPS Receiver - Like the tiny camera, the use of a Global Positioning System (GPS) receiver is under

study. Some technical issues exist in common GPS receivers for terrestrial usage such as un-

suitability due to its operational altitude and speed limitation (e.g. to avoid illegal ballistic missile

guidance) .

For attitude control, the following set of actuators are foreseen:

Magnetorquer - The satellite attitude correction process can be aided by this actuator, which acts

generating a magnetic torque in the cubesat.

Reaction Wheel - This actuator is used when a small cubesat rotation correction is required.

All the sensors and actuators are controlled by a dedicated, very low power, MCU. This interface

will abstract the details associated to all ADCS functionalities e.g. Analog-to-Digital Converter (ADC)

/ Digital-to-Analog Converter (DAC), allowing a digital-based interaction (get or set digital data) from

another subsystem.

The EPS subsystem is responsible for all energy management. It is connected to the battery pack

that stores the harvested energy from the solar cells. These solar cells need a high efficiency ratio. Hav-

ing the Commercial3 Ultra Triple Junction (UTJ) cells with 28.3% on orbit efficiency, up to 135.3mW/cm2

can be generated. All the six spacecraft faces must be coated, as much as possible, with solar cells

and no deployable/external panels are predicted in the design since they are expected to increase the

satellite drag, an undesirable effect that shorts the mission lifetime.

The Analog COM subsystem (refer Fig 3.2 for a more detailed view) entails the transceivers and

antennas. It is responsible for signal modulation/demodulation and transmission/reception. The use

of 145MHz (λ ≈ 2m) in the uplink (satellite reception) and 435MHz (λ ≈ 70cm) for downlink (satellite
3http://www.spectrolab.com/DataSheets/TNJCell/utj3.pdf accessed on 08-09-2012
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transmission) frequencies in half duplex mode are currently under study. The operation on higher fre-

quencies, such as those found in the S-Band, are also valid but this question remains under research.

With the S-Band use, high bit rates can be achieved since a larger bandwidth is available.

As Fig. 3.1(b) shows, all these subsystems are stacked up together and inter-connected with a

common bus. In the case of ISTNanosat this physical bus is used to support mainly the I2C serial data.

3.4 Heart unit hardware architecture

The Heart unit architecture comprises two processor boards and the corresponding software run-

ning on top of them. This dissertation will rely on a subset of the pre-existing ISTNanosat-1 hardware

conceptual architecture as reference to develop the intended software functionalities. Either the devel-

oped software and the conceptual hardware architecture are driven by three main aspects: low power,

compact form factor, and redundancy. The conceptual hardware architecture is illustrated in Fig. 3.2.

Figure 3.2: Heart Unit conceptual hardware architecture as defined in the ISTNanosat project.

The COM subsystem is responsible for processing all in/output space-link digital data and to route

some information to another subsystems like the C&DH. The first design decision taken for this sub-

system concerns the necessary processing power to support the demanding functionalities, such as

receive the GS commands and ensure its reliability, send the telemetry beacon and allow the imagery
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transmission to Earth. These functionalities require interaction with different types of interfaces and pro-

cessing space-link network protocols. Fortunately, all these functionalities share a common behaviour:

an heavy but sporadic energy consumption. With this in mind, from all the available power allocated to

the Heart unit (950mW) the COM subsystem will have ∼ 80% of it (750mW). This 80% is a rough estima-

tion based on the foreseen high demanding requirements in terms of processing power, e.g. space-link

network stack processing and remote command execution. This power budget allows the utilization

of a general purpose MCU. Such MCU permits software flexibility in terms of code re-utilization, e.g.

from open-source community, and a more wide spectrum choice of possible OS types and operational

philosophies.

The C&DH subsystem is responsible for satellite housekeeping tasks and for the safety-critical opera-

tional decisions as well as the remaining subsystems management. This subsystem must have an ultra

low power consumption profile to allow basic satellite operation when facing unfavourable scenarios.

For example, if EPS batteries are defective or long eclipse periods occur, the C&DH can keep the basic

satellite functions: maintain attitude and telemetry transmission and simple remote command reception.

The C&DH gets the remaining Heart unit power budget, ∼ 15% or 150mW.

Fig 3.2 shows also that besides the COM and C&DH primary connection through the system bus

(I2C over PC/104), they are also both connected to the Analog COM subsystem. This subsystem have

three distinct functions. The Data Framer, with dedicated hardware and software, is responsible for

formatting the serial data into a specific network protocol. The Framer also conceals from the remain

subsystems the intrinsic protocol mechanisms like handshakes, signalling, retransmissions, etc.. This

functional block in/output a simple serial data stream to other subsystems. The modem component

translates the digital data into appropriate analog signals to be later transmitted over the air through

the radio transceiver and antennas. The Data Framer and Modem blocks together are usually called

Terminal Node Controller (TNC).

This Analog COM subsystem allows two type of interactions, one using the Data Framer and another

using the Modem directly. The COM subsystem direct connection to the modem implies that COM

has to implement the framing functionality on its own. This protocol agnostic interface is more flexible

because it allows the use of any network protocol stack on the space-link. Therefore, the COM software

implementation is free to use the most suitable protocol stack. When the framing operations are done

by the accessing subsystem, the Data Framer can be switched off in order to save energy.

The C&DH subsystem is also connected to the Analog COM subsystem. This connection is a sec-

ondary one and was only implemented for redundancy reasons. In normal operational mode, both C&DH

and COM have the necessary conditions to operate, being the COM responsible for the space-link man-

agement. In this mode, the C&DH subsystem will be free to process its satellite housekeeping tasks

and interact with ADCS subsystem. Moreover, when there are no conditions to keep all the subsystems
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in proper operation, the C&DH ensures a simple communication profile (only beacon transmission and

GS command reception) using all the Analog COM function chain, following a low duty cycle strategy. In

such scenario, known as safe-mode profile, the COM unit is switched off to minimize the overall energy

consumption. In this case, the C&DH relies on one very basic Data Framer to perform the space-link

data encapsulation process. This Data Framer may have a very basic protocol functions subset imple-

mented in a dedicated hardware, thus freeing the C&DH of being overburden with this heavy task.

From the Heart Unit perspective, it is assumed that some external subsystem (e.g. EPS) will trigger

the Safe-mode profile when it is needed. Table 3.1 summarizes this conceptual redundancy strategy.

Table 3.1: Operational profiles
Operational profile C&DH functions COM functions Active connections

Normal

• General satellite • Process and executes • C&DH↔ COM

housekeeping GS commands • COM↔ Analog Modem

• On-board subsystems • Send telemetry beacon

management • Imagery transmission

Safe-mode

• Same as Normal profile; • C&DH↔ Data Frammer

• Send beacon over the space-link Off

• Process and execute basic

commands from GS

Table 3.1 shows that the image transmission function is not supported in safe-mode profile, mainly

because this is considered a secondary satellite functionality. Also, a simple command service is sup-

ported by the C&DH through the Data Framer for reasons that were above discussed.

Now let’s take a closer look on the C&DH and COM hardware platforms that will support the software

modules developed in this dissertation. The purpose of this conceptual description is not the description

of the hardware development but rather to provide a guideline for software development and a starting

point for the future hardware implementation.

• COM hardware platform

The requirements already described for this subsystem suggests the use of a general purpose

32-bit MCU, capable of supporting off-the-shelf operating systems with a reasonable process-

ing power and energy consumption ratio. The selected CPU architecture was the 32-bit Advanced

RISC Machine (ARM) due to its power efficiency characteristics [61] and global support from many

embedded systems vendors. The successful BeeSat-1 mission, with almost 3 years on orbit, car-

ries an ARM-7 that somehow demonstrates the viability of this architecture in CubeSat missions.

The ARM also incorporates a Memory Management Unit (MMU), which allows the use of popular

OS such as Linux. This MMU is responsible for handling the memory access by the CPU, imple-
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menting for example, virtual to physical (and vice versa) address translation, memory protection or

cache control.

In what concern system memory, there is a need for non-volatile memory such as flash memory to

store onboard data and volatile memory as operating system working memory.

Finally, regarding the project specifications a USART must be used to enable I2C communications

outside the COM subsystem.

• C&DH hardware platform

According to the Heart unit hardware architecture, the C&DH must have a low power consumption

profile. To meet this requirement, the ultra low power TI MSP430 architecture was selected. This

MCU, one of the best options when low power constraints are envisaged, allows operation in

different Low-Power Modes (LPMs), which brings a useful way to employ energy-aware software

solutions. Also, this processor type is commonly used in CubeSat platforms, mainly through the

CubeSat-kit sold by Pumpkin, a popular CubeSat COTS vendor. A lot of different well succeeded

projects, such as Delfi-C3, HawkSat-1 or e-st@r, proved the TI MSP430 suitability for this kind

of demanding scenarios. Also, a lot of OS, mostly with real-time characteristics, support this

architecture. This fact brings also a large OS selection versatility.

The remaining components are basically the same as those in COM subsystem but with more

restrictions. There are several operating system solutions that can easily be adapted for this archi-

tecture, a lot of them with low memory footprint4. This is useful because, even with small memory

capacity, it is possible to reuse and tailor public available code as necessary. In what concerns

the platform communications, and taking into account the Heart unit hardware conceptual archi-

tecture and specifications, three USART are needed: one for the PC/104 connection, other for

the ADCS direct connection and another to access the Analog COM when the satellite is in safe-

mode. Additionally, the C&DH board should have a Timer, a Real Time Clock (RTC) and a system

watchdog.

3.5 Heart unit software architecture

The presented Heart architecture was designed according three main vectors: low power, ability to

run in constraint hardware, and resilience against lack of resources (such as energy).

In this architecture it was assumed that some external subsystem is in charge for Heart normal or safe

profile switch. It also relies on the assumption that there is a Data Framer on the Analog COM subsystem

that can perform the necessary layer 2 framing when the safe-mode is running. This assumption leads

4Amount of required memory needed to run a specific program
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to a redundant Data Framer implementation, one in the COM subsystem when normal profile is running,

and another in the Analog COM subsystem when the safe-mode profile is activated. The rationale

behind this function redundancy is having a versatile layer 2 implementation (over software) that can

smooth the upper layers interaction in COM. The hardware implemented Data Framer will serve the

C&DH when Heart runs on the safe-mode profile.

The next subsections will focus on the software architecture developed for both C&DH and COM

subsystems. It starts by discussing the developed COM functionalities as well as the base system

details. Then, the C&DH software details are presented.

3.5.1 COM Network protocols

Taking into account the need for a reliable remote command operation, the possibility to transmit

images from the satellite, and the telemetry service, some conceptual decisions were made.

Fig. 3.3 shows the interactions between each service and the corresponding network layers. The

beacon service directly uses the AX.25 layer 2 protocol, because it is a very simple service. The reli-

able remote command service uses the CSP protocol which is later encapsulated over AX.25 frames.

To ensure the imagery transmission to GS the Tolerant-CSP (T-CSP) is used. All these services are

implemented in a module called Primary Satellite Interface Software (PriSIS) which runs on top of the

OS. This very important application serves as the satellite data gateway when the satellite runs on the

Normal profile.

Figure 3.3: PriSIS module with each supported service.

The rationale behind this network protocol stack for these services is discussed hereafter.

• Telemetry - The first protocol design decision had the specific objective of maximizing the number
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of potential GS on Earth that can receive the broadcast of this basic health satellite information

(telemetry). To achieve this compatibility one widely deployed protocol must be used to ensure, as

much as possible, the communication standardization. The protocol used for digital telemetry in

downlink (satellite to GS) is AX.25, recurring exclusively to Unnumbered Information (UI) frames.

This AX.25 protocol subset is conceptual simple and being the basis of the amateur packet radio

service is widely supported by most of the radio amateur GS. The AX.25 -UI is also the basis

of a widely used packet radio service (mostly radio amateurs) called Automatic Packet Reporting

System (APRS)5, which raises the number of individual operators that are capable of decoding

AX.25 frames. The UI frames have a synchronization field in the beginning and in the end of every

frame. This important characteristic avoids the framing processing errors. Another interesting fact

is that this frames allow unacknowledged/asynchronous mode operation, which is useful in this

very disruptive medium because they may suffer from bandwidth asymmetries (up and downlink)

and high packet loss rates. The UI frame efficiency is not very high (≈ 93 %) but the described

intrinsic advantages makes this trade-off acceptable and the least worst option.

Other different frames are available in AX.25 protocol, but only for connected mode operation.

The connected mode is undesirable for this scenario because it relies on time constraints to de-

tect transmission errors. These timeouts can lead to link under-utilization when, for example, a

node stops its transmission waiting for the error trigger mechanism. The connection mode also

highly depends on both up and downlink conditions, which is still an undesirable behaviour in the

presence of highly asymmetric duplex links. Finally, this mode requires extra control message

exchange between nodes implying a high overhead in the space-link.

The telemetry information is directly encoded into the AX.25 UI frame payload in a human-readable

format (ASCII). Every piece of telemetry data is delimited by a special character ’:’. Fig. 3.4 shows

the encoded telemetry packet used to transmit the COM health status. The system clock data

provides a time reference for the remaining values.

Figure 3.4: Telemetry information encoded into AX.25 UI Frame

Any kind of information with dynamic size can be encoded using this special character approach.

The receiver does not need to know a priori each field length; it should only know the information

format semantics. In other words, the receptor only needs to know what kind of information is
5System which allows real-time tactical information reporting, such as GPS coordinates, over radio networks.
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inside each field. The use of this special character to separate every piece of information have

little efficiency penalty, but without this and keeping the information in ASCII format, each field

must have a fixed size. Another alternative is to employ an external mechanism that informs the

receiver about each field length and its contents. This last alternative was discarded because it

will affect the compatibility requirement.

Taking into account both viable approaches for telemetry encoding (one using the character as

separator and other using fixed length fields) in the worst case scenario, i.e. using the least

possible useful information in each field, the efficiency of using fixed length fields is ≈ 43%, while

the adopted solution features ≈ 56%. It is also important to note the character approach has a

downside since this special character cannot be transmitted as telemetry information because it is

reserved.

Another aspect to be taken into account is the frame fragmentation. This implies a trade-off be-

tween much fragmentation, which affects the overall transmission efficiencies, and large MTUs

that raise the probability of data corruption. Therefore, the correct choice for a MTU value should

be related with the link expected Bit Error Rate (BER). Since the ISTNanosat-1 uplink/downlink

channels are not yet defined, a fixed MTU of 256 bytes is used. This MTU value represents the

maximum payload possible inside an UI frame.

• Remote command reception and processing - The remote task invocation from GS operators

on Earth raises a problem since each command can have other subsystem (rather than COM) as

destination. Two possible approaches can be used to address this routing functionality:

1- To implement a command dispatcher, which looks inside the UI frame payload, parse it, and

compute the required forwarding logic passing the payload content to the destination subsystem.

This option seems to be not very elegant as it lacks standardization, versatility and transparency

if a plug-n-play architecture is followed for ISTNanosat. It also suffer from scaling problems when

multiple subsystem are added and multiple applications are installed in each subsystem.

2- To use a small layer 3 protocol which is layer 2 technology agnostic. This network protocol also

takes care of the routing to different subsystems (nodes) supporting different applications. With the

use of a Layer 3 protocol, the PriSIS software can route a specific command thought the satellite

internal bus, delegating the packet directly to another subsystem without processing its content.

To address this functionality the CSP protocol is used. In this solution, the CSP packets are

encapsulated using AX.25 UI frames. The utilization of this layer 2 protocol under CSP enhances

the error resilience by forcing a maximum CSP packet length (recall that CSP have variable length

packets) and providing error detection using its FCS mechanism. The CSP does not support AX.25

protocol directly. So, an extra driver had to be developed to support this solution.
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Since each subsystem has more than one remote executable task, each command message is

composed by the remote task unique numeric identification, the local GS counter and, optionally,

some arguments. After the correct command processing by PriSIS, it sends back to the GS op-

erator another CSP packet containing the received GS counter and the respective success/error

code. In the particular case of loosing a PriSIS response, the GS operator can later issue an-

other command asking the satellite to send a list of the previously executed remote tasks. Fig. 3.5

illustrates a typical bidirectional communication.

Figure 3.5: Remote command invocation using CSP over AX.25

Here, the GS operator issues a satellite command, targeting the COM subsystem identified by

the CSP id 1. The GS software encapsulates the command into a CSP packet which, in turn,

is encapsulated into an AX.25 UI frame and sent through the space-link. The COM subsystem

replies using the same network stack with the received GS counter and its response code. This

response code can be an acknowledgement or other specified code.

• Imagery gathering - In order to allow the correct transmission of onboard images taken by the

foreseen tiny camera installed, a layer 4 protocol must be employed. The rationale behind the

use of such a transport protocol is the lack of available payload size inside a CSP packet, due to

the imposed AX.25 MTU restrictions. Every image with more than 253 bytes6 needs to be seg-

mented into multiple CSP packets. This segmentations process also needs to take into account

6256 bytes AX.25 MTU value and 4 bytes CSP header overhead (recall the CSP overhead from Fig.2.10)
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an efficient mechanism for missing packet retransmission, to overcome the issues imposed by a

particular segment lost in the downlink. Since the CSP protocol does not have one transport layer

implementation that performs fragmentation and packet recovery, a new solution called Tolerant-

CSP (T-CSP) was engineered. The Tolerant prefix has to do with the underlying asynchronous

transmission mode provided by the AX.25 UI logic. This UI mode is very useful here as it does not

have any time-based constraints. Thus, the segment transmission process can proceed continu-

ously without any acknowledgement (here optimistic can be synonym of tolerant). The T-CSP rely

on Selective Negative ACKnowledgment (SNACK) logic to ensure packet recovery. The SNACK

approach is adequate for this particular scenario because the space-link may suffer from high

throughput asymmetry and delay. This asymmetry tends to be favourable (more throughput) for

downlink, being important to use a parsimonious ACK mechanism to avoid the utilization of the

uplink channel as much as possible.

In Fig 3.6 the T-CSP segment format is shown, where 8 bits are allocated for file identification, 16

for segment number and another 16 for total segments in the file being transmitted.

Figure 3.6: T-CSP segment over CSP packet

Therefore this structure allows up to 255 possible different files and 65535 segments per file. The

”File nr.” field in the T-CSP segment identifies the file being transported. This field is useful when,

for example, a remote task asking for download all aboard images in a row is triggered. The largest

file that can be transported with this mechanism can have:

216 × 247

10242
= 15.44Mbytes.

This value is reasonable regarding the actual typical birates (9600 and 1200 bit/s) on such links.

When new bitrates become available the overhead becomes less critical and the T-CSP fields can

be stretched, allowing the transmission of large files.

The efficiency of this complete stack, in the best case (the 29 bytes overhead is used to transport

247 bytes payload), is ≈ 90%. Since the T-CSP solution is not used in critical satellite commu-

nications (only in file transmission) this efficiency ratio is not dramatic. Fig 3.7 demonstrates a

successful file transmission from the PriSIS (communications handler software aboard the COM

subsystem) to the GS on Earth.
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Figure 3.7: T-CSP Fragmentation mechanism

In the first step, the GS software (which implements the T-CSP protocol) sends a CSP packet in an

AX.25 UI frame asking the execution of the functionality with code ”getImg” with the argument ”ID”

identifying the specific image to fetch. Then, in the step 2), the PriSIS software loads the image

from the local file system and splits its content into multiple chunks to be later sent one by one using

the T-CSP container (step 3 to n). Every time the GS receives a T-CSP segment, it computes the

correct file offset for the incoming payload based on the segment number and store the content in a

proper place. Note that segments may not arrive sequentially (e.g. a segment retransmission can

occur), so the receiver must know which file part is receiving. After the reception of all segments

(step n+1) the GS software is able to display the saved image.

Fig. 3.8(a) gives an example of what happens when some segments are lost and 3.8(b) demon-

strates some problems associated with large verification windows (later discussed).

In Fig. 3.8(a), the correct CSP packet reception in COM by PriSIS (asking for a particular image),

triggers the T-CSP file transmission. Then, assuming the first segment is lost and PriSIS does not

know about this failure, it continues sending every segment sequentially. When the segment 2 is

correctly received by the GS software (step 2), it checks if there are x missing segments before the

segment 2 (in this case check if 1 was correctly received). So, it sends a CSP packet asking for

that specific lost segment (segment 1 in this case). Immediately after this, some unexpected link

disruption occurs and all the next segments are lost, including segment 1 retransmission. When

the GS software detects this heavy failure it triggers a timeout and reports to the operator this

failure, reporting the number of segments that were correctly received and how many segments
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(a) (b)

Figure 3.8: Fig 3.8(a) - T-CSP Segment retransmission mechanism; Fig. 3.8(b) - Verification window

size

are missing at that particular moment. With this information, the operator have the opportunity

to decide if it is good to proceed with the retransmission process now or later. For example, if

the satellite contact opportunity window closed, the operator can delay the retransmission process

to wait for another satellite pass, keeping the already received segments in memory. After some

delay (or not) the GS issues another segment request and finally the missing segment is received.

Obviously, if too many segments were lost, the operator should cancel de retransmission because

this process, which ideally benefits the downlink usage, will be reverted due to high the retrans-

mission message rate. With all segments correctly received, the GS software can now display the

correct image to the operator.

The timeout value should be selected taking into account the time that one complete AX.25 UI

frame takes to be transmitted. Regarding the typical bitrates, each frame takes ≈ 0.23 seconds

at 9600 bit/s and ≈ 1.8 seconds at 1200 bit/s to be transmitted. The propagation delay can be

ignored taking into account the distances involved in LEO.

The Fig. 3.8(b) shows how the x (back verification window) value affect the T-CSP protocol ef-

ficiency. This x value should be small (1), to avoid PriSIS memory overflow when multiple CSP

packets are sent to it, asking for T-CSP segment retransmission. In the Fig.3.8(b) example, sup-

pose that x = 2, and in step 1 the segments 1,2 and 3 were already received. When the segment
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6 arrives, the GS software will inspect if segment 5 an 4 was correctly received. In this case, they

are missing, so the GS asks PriSIS for them. As soon as segment 4 arrives (step 3) the T-CSP

protocol will inspect again for the last 2 segments and sends the CSP packet for the segment 5

again (which is unnecessary in this case).

The motivation behind this tunable x parameter, as window back verification size, is to inspect how

much high proactive-based approach (large windows) impacts the convergence speed and uplink

utilization.

The T-CSP protocol can be also be used in the opposite way to upload e.g. configuration files to

the satellite.

Finally, Fig. 3.9 resumes the final protocol architecture involved in the space-link when both Normal

and Safe-mode profile are used.

Figure 3.9: Exported C&DH and COM communication options using the available function profiles

The image shows the simple AX.25 telemetry in the downlink broadcast by COM when normal-

mode is activated, and broadcast by C&DH when safe-mode is running. The remote command service

provided by COM using the CSP packets on top of AX.25 UI frames is highlighted as well as the transport

protocol interaction with either GS and PriSIS for image transmission. Finally, the simple command

service in C&DH over a simple command/acknowledge is shown when the Heart unit enters safe-mode.

3.5.2 System software

This subsection will cover the software architecture for the underlying operating systems and auxiliary

processes, e.g. boot loader. Firstly the COM base system is described followed by a discussion on the
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strategy chosen for C&DH Operating System.

COM Operating System

This subsystem uses the Linux kernel as OS nucleus and GNU software as userland tools. The

use of Linux speeds up the functionality development, since a lot of code can be re-used from the

open-source community. Also, CubeSat developers and HAM operators are among the very active

GNU/Linux on-line community which provide a good resource of experience from past CubeSat

projects and documentation. The economic factor is also important when choosing Linux, since

it is free and therefore it will lower the project costs. Both kernel and user-land software are split

into two different files, the kernel image and the compressed root FileSystem (rootFS) image, both

stored in non volatile memory (Flash). The COM OS boot loader implements the required image

loading process to ensure e.g. the robustness of the kernel image before loading it. This specific

OS loading process in described in Figure 3.10.

Figure 3.10: COM Operating System (OS) loading process

As soon as power is available, the boot loader will copy both images (kernel and rootFS) from Flash

memory to RAM to be later used. Running entire OS from RAM allows a faster and energy efficient
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data access with a minor performance penalty imposed by the initial copy time. Next, the boot

process will perform the CRC calculations against the kernel image to attest the software integrity

in order to avoid executing corrupted code, which can lead to unexpected satellite behaviours. This

evaluation is only done against the kernel image, because it is the critical part of this entire software

system. If the integrity check detect errors in the kernel image, the boot process aborts and waits

for a external decision e.g. EPS energy re-initiation. This strategy avoids constant useless boot

retries, which leads to energy waste. If the kernel image checks succeeds, the boot process will

launch the Linux kernel, which later decompress the rootfs image and triggers the normal Linux

init process. Afterwards, the entire COM base system is ready to host the on-board applications.

The Linux kernel abstracts the subsystem interaction using the generic serial and I2C drivers. The

rootFS contains the needed tools to interact with this kernel drivers from userland side.

This COM base system allows a light and compact OS solution to serve as host for the described

PriSIS module.

C&DH Software

Taking into account the described requirements, specially the C&DH safety-critical tasks, it was

settled that the OS aboard this subsystem will be a RTOS. A RTOS will enhance the overall

system correctness enabling time-constraint task prioritization. This is important for this subsystem

since it is in charge of the overall satellite management, namely receive and send information to

ADCS in order to understand and react on the CubeSat attitude. The RTOS allows a strict task

differentiation. For example if the OS scheduler takes two different concurrent tasks, one sending

the satellite beacon (if the satellite is running on safe-mode profile) and another monitoring the

satellite attitude, the higher priority task always retains processor control when it is expected no

matter whether the low priority task have finished its computations. In this example, a good choice

probably will be to allocate more priority to the task that will handle the attitude than to the beacon

task. Furthermore, it is important that the high priority task uses the processor time always and

when it is strictly expected. Since task prioritization is not enough per si (soft Real Time) and a

tight control over each task timeline are needed, a hard RTOS will be used on this subsystem.

The RTOS tend to have very low footprints and allows close hardware programming. Both of these

aspects are desirable characteristic for this subsystem. There are some important aspects to take

into account when choosing an RTOS:

• Task switching delay;
• Maximum tasks supported;
• Amount memory required;
• Task priority (shared or unique) and management;
• Interrupt adaptability from external devices;
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• Idle state existence or requirement.

Besides the technical questions just refereed it is also important to keep the C&DH implementation

costs low and for that reason an open-source/free RTOS will be more interesting. Beyond the

RTOS it is also important to choose a compatible opensource Software Development Kit (SDK).

This SDK must include the toolchain - compilers, linkers, assemblers, etc. - and the Integrated

Development Environment (IDE)/debugger, which allows a full opensource development chain.

The more relevant free RTOS available that actually support the TI Mixed-Signal Processors

(MSP)430 MCU are Contiki, ChibiOS and FreeRTOS. None of these RTOS have a quality certifi-

cation such as International Electrotechnical Commission (IEC) 61508 Safety Integrity Level (SIL).

This awareness raises the attention for the software implementation and test phases. Among

these RTOS solutions the FreeRTOS is used, because it has almost all the TI MSP430 families

ported (which gives versatility for later implementation phase) with different toolchain’s, including

the opensource ones. The FreeRTOS also has the largest/active community which brings more

and better/reviewed documentation and code available.

The FreeRTOS typically occupies from 6 to 10 Kbytes memory footprint, which is quite acceptable

for almost all MSP430 MCUss. The FreeRTOS has a pre-emptive priority scheduler, where tasks

with the same priority are served in a round robin time slicing basis. In addition, the FreeRTOS

also provides the necessary Inter-process communication (IPC) mechanisms, such as queues and

semaphores.

In order to meet the C&DH power requirements the FreeRTOS operates using the LPM available

in MSP430 to lower the overall C&DH power consumption. When the satellite is in safe mode

profile it uses the internal MSP430 USART to send/receive serial data to the Analog subsystem

(more specifically to the Data Framer). A dedicated beacon task is used to send the beacon

periodically and the GS command handler task which process the received commands from GS

operators. As a design option, the task that processes the received remote commands have higher

priority than the beacon task to ensure that commands can take effect as quickly as possible. The

interconnection to the remain subsystem is also handled by a non-critical task which processes

the sent and received I2C commands.
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4
Implementation

The tight Heart unit requirements and the corresponding architecture, clearly suggests that the im-

plementation phase should employ a compact, reliable and portable software solution. These three main

drives directly affect the implementation strategy used. The mindset was to try to develop, as much as

possible, reusable software. The possibility to reuse public available third-party components was also

taken into account. This portability on either the code developed and in the code reused enables a

modular software architecture. Other subsystem developers or even other projects can also benefit from

this modularity. In order to minimize the hardware requirements imposed by the produced software so-

lution, it was necessary to rely on strategies that allow low overhead systems having, for example, the

possibility to use shared and compact libraries.

4.1 Prototyping boards for software development

To enable the software development on both C&DH and COM subsystems it was necessary to

choose a rapid prototyping hardware. Taking into account the Heart architecture, its requirements and

specifications, two different hardware platforms were chosen, one for the COM, and another for the
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C&DH units. The hardware characteristics of each board were selected so that they were not very

different from the envisaged final hardware architecture.

4.1.1 COM hardware platform

The COM subsystem is built around a 32-bit ARM processor, capable of supporting the intended

general purpose operating system and the required PriSIS application. An AT91RM9200 based board

was used, namely the AT91RM9200-DK board. Fig. 4.1 shows the prototyping platform used.

Figure 4.1: AT91RM9200 Development Kit

This Development Kit comes with a lot of unnecessary peripherals (according to the COM design

approach). Therefore the relevant specifications of this board are:

• AT91RM9200 MCU - This Micro-controller have an ARM920T CPU core, capable of 200 MIPS at

180 MHz. Furthermore, it has 16 Kbyte of data cache and the same amount of instruction cache. In

addition, it has 16 Kbytes of SRAM and 128 Kbytes of ROM memory. External Bus Interface (EBI),

SPI, I2C interfaces and generic USART ports are also available. The MCU manufacturer argues

that the maximum consumption (measured running a full performance algorithm, which puts the

processor at full speed) at 25ºC is 45mW (1.8V and 25mA) [62].

• 2 Mbyte parallel flash (AT49BV) - This flash memory features a 70ns of access time. It consumes

about 20mA at 3V in Active mode (60mW) and 10µA in standby.

• 8 Mbyte serial DataFlash (AT45DB) - This flash memory operates at 2.7V and consumes 4mA in

active mode (10.8mW) and 2µA in standby.
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• USART - Serial communications interface driver with I2C. Additionally, two DB9 interfaces are

available.

The interconnected components above described result on a conceptual hardware architecture illus-

trated by Fig. 4.2.

Figure 4.2: COM subsystem prototype

The entire solution depicted in Fig. 4.2 consumes ≈ 150mW if all the components are being used.

Therefore this prototyping board meet the power requirements previously settled.

4.1.2 C&DH hardware platform

Taking into account the C&DH architecture, the hardware platform used was a moteist++s5/1011.

This board, illustrated in Fig. 4.3, meets the intended hardware specifications for the C&DH subsystem.

Figure 4.3: Moteist++s5/1011 top view

This platform uses as MCU the TI MSP430F5438A. This ultra-low power micro-controller relies on a

16-bit CPU running with a 25 MHz system clock. It also has 256 Kbytes of Flash memory, 16 Kbytes

of SRAM and multiple external peripheral connections such as I2C, SPI or Universal Asynchronous

Receiver/Transmitter (UART). In the moteist++s5 platform, these external connection peripherals are
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available through the DF9M/Hirose physical bus. The MSP430F543xA have one active mode and six

software selectable Low-Power Mode (LPM) of operation. When the MCU enters on any of these LPM

it can be awake back to active mode by e.g. an interrupt event. The power consumption depends on

the time spent by the MCU on each LPM. In the lowest power consumption profile (LPM-0) the MCU

consumes 73µA using 3V at 25ºC (0.105 mW). The MCU top consumption occurs when it enters on the

active mode operating at 25MHz. In this case it spends 9.60mA at 3V (28.8mW).

According to the architecture, the C&DH should be connected to the Analog COM subsystem using

a serial line. This was done by using a Crossbow MDA100 sensor board connected to the moteist++s5

DF9M/Hirose port. Since the serial line operates at 5V, in this case, the Analog COM subsystems was

connected with the MDA100 through a MAXIM low-power MAX3222 RS232 transceiver to achieve the

required voltage levels. The I2C connection with the COM subsystem is also done using the exported

available ports on the MDA100.

Analysing the Heart unit as a whole, with both C&DH and COM subsystems connected and regarding

the previous information on each board power consumption, it is possible to conclude that this hardware

setup should spend from ≈150mW to ≈180mW as maximum power consumption values. Fig. 4.4 shows

the expected Heart unit power consumption as a function of the amount of time C&DH spends on either

LPM-0 and Active Modes. Here, the maximum consumption of the COM subsystem was only considered

because it is hard to predict its dynamic power consumption.

Figure 4.4: Heart unit overall power consumption.

4.1.3 Software solution

The Heart unit is composed by two different subsystems, each of these is responsible for different

functionalities. Here, we consider the different applications developed on each subsystem, focusing on

the major implementation decisions taken. We start by presenting the COM operating system giving

the necessary details to understand how can PriSIS run on top of a compact and clean environment.

After this, the required applications and the underlying network stack implementation is discussed. Fi-

nally, a special attention is given to C&DH where an understanding on the developed real-time based
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applications is provided.

Two different processor architectures are used, MSP430 in the C&DH and ARM in the COM. Since

the host system processor architecture (x86) differs from both target processor architectures, all the em-

bedded software needs to be cross-compiled. Note that the host system is where the code is produced,

assembled, linked, etc. and the target system is where the resulted binaries actually run.

Anex A gives extra information on the steps required to install software in a production machine. Also

some notes are given to enable its cross-compilation targeting the different subsystem platforms.

4.1.3.A COM base system

The COM operating system includes three different components: the boot-loader, the Linux Kernel

and the userland environment also known as root FileSystem (rootFS). The first implementation issue

was what would be the best approach capable of minimizing the hardware resources and, at the same

time, enabling a versatile platform for the PriSIS module. Versatility, here, means possible third-party

library code reuse and special kernel module loading e.g. Linux AX.25 native support.

Two main reasonable options are available. On one hand, it is possible to tailor and implement

an out-of-the-box Linux distribution for embedded systems, such as OpenWRT; the problem with such

approach is the required time that must be spent to remove all the useless pre-defined software which

comes by default within this Linux distributions. This type of operating systems typically are designed

to run on specific scenarios such as domestic wireless routers. Also, these distributions implement the

system configuration typically through a couple of system tools such as run-time package managers. All

these facts are considered undesirable for this scenario because they mean extra unnecessary run-time

overhead aboard. On the other hand, it is possible to rely on simple frameworks, such as Buildroot1,

which allows complete embedded system parametrization through a set of meta-information files (e.g.

Makefiles and patches) in compile time. It also provides a simple approach to new developed software

integration in a portable way. With this in mind, the buildroot option seemed to be a reasonable choice

for the rootFS.

The Linux kernel version used was the 2.6.38 vanilla source2. This version was used mainly because

this is the last kernel version where it is possible to apply the AT91 support patch3. This patch is impor-

tant because it enables/enhances the support of some of the required AT91RM9200 MCU hardware on

Linux. Those features are related with e.g. DataFlash operation, I2C and SPI bug corrections.

The Linux kernel natively supports some relevant features for PriSIS module. Therefore, the following

kernel features were enabled:

1http://buildroot.uclibc.org/ - accessed on 8-10-2012
2Unmodified kernel source from kernel.org
3http://maxim.org.za/at91_26.html - accessed in 08-09-2012
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• AX.25 layer 2 protocol;

• Use ARM Embedded-Application Binary Interface (EABI) feature;

• Support for bzip2 compressed rootFS;

• Activate the I2C, SPI and second EXTended filesystem (EXT2) support.

Probably, the most important feature here is the native AX.25 support as a loadable kernel module.

This kernel module implements all the required AX.25 framing functions. To access these framing func-

tionalities from userland, two options exist: one through a kernel created virtual interface, and another

via the AX.25-library as Fig. 4.5 illustrates.

Figure 4.5: AX.25 kernel module interactions.

This kernel module was activated using the build-in strategy. This will automatically include the

module into a single kernel image file, avoiding the dynamic module load process. Since this kernel

image strictly has only the required functionalities, the dynamic module load process is unnecessary

and it would bring unnecessary module organization care.

The support for compressed rootFS image is also enabled. With this functionality the kernel is able

to load a compressed rootFS from the storage medium. This is useful as it allows extra storage space

saving.

To raise the compatibility between different toolchains, both the Linux kernel and the rootFS were

compiled using the Embedded-Application Binary Interface (EABI). This enables a code standard format

among different objects produced by different compilers. This is important because it enhances the

modularity between kernel and rootFS compiled images.

The final Linux/ARM kernel image occupies 1.55 Mbytes of flash memory storage.

At the end of a correct Linux kernel boot operation, the userland software (rootFS) is loaded. This

rootFS image comprehends all the necessary software, ranging from basic system management tools,

such as GNU coreutils4, to peripheral configuration handlers, such as AX.25-tools. The buildroot infras-
4Basic file, shell and text manipulation utilities
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tructure simplifies and automatizes the intended rootFS cross-compilation process with a high level of

customization. It relies on a combination of Makefiles and patches executed in chain and activated by

the required configuration.

The most important configurations for COM rootFS are the following:

• Enable the EABI interface and µClibc usage;

• Instruct the compiler (GCC) for code size optimization;

• Use shared libraries;

• Instruct for EXT2 bzip2 compressed image output;

• Ask for SPI and I2C-tools packages installation;

• Configure the target architecture (ARM) and processor variant (920T);

The highly configurable µClibc use is important here because it is specially designed to run on

embedded systems, dealing with space constraints better than the typical general purpose glibc. It also

supports shared libraries, which is a good strategy for code redundancy removal, thus allowing even

more space saving. Some experiments with static linked libraries were made and the impact on storage

requirements were high. This means that the produced software that will run on top of this rootFS (e.g.

PriSIS) will also need to be dynamic linked to avoid this waste of storage space due to library code

duplication.

The I2C-tools package will help the I2C bus runtime debug and the setserial will enable the serial

interface configuration.

Note that buildroot infrastructure will produce its own toolchain, based on µClibc which will be useful

to compile the rootFS. This toolchain will be also used later to compile the COM software that is not

compiled by the buildroot framework.

The EXT2 file system was chosen due to its high maturity on embedded systems, where the bzip2

compression option allows in this case 81.25% of storage saving compared with an uncompressed

image.

To enable the interaction with the exported AX.25 kernel driver functionalities from userland, as

described in Fig. 4.5, the AX.25 library and AX.25-tools5 are required. Since this software is not currently

automatically supported by the buildroot packages, it was necessary to extend the buildroot framework

to support the AX.25 protocol by creating the required buildroot packages. These packages instruct the

framework about the steps required to compile this software. A buildroot package is composed by a set

of patches and meta-information. The package is later integrated into the buildroot package system to

allow the required software to be compiled together with all the remaining rootFS software. In alternative

to this packet method, it is possible to cross-compile the original library code outside the framework and

copy the resulted binaries into the rootFS image. This is not an elegant method because it compromises

5www.linux-ax25.org - accessed on 20-08-2012
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two important aspects: versatility, as every time the rootFS must be recompiled the binaries must be

copied into the produced image again; also the external compilation process must take care about the

correct library paths (that are installed into the rootFS image), which can be very complex to maintain

when multiple dependencies are required. More important than this is the portability penalty. If the AX.25

library and tools are externally compiled and if something needs to be later changed in the underlying

system (e.g the processor architecture change from ARM-9 to MIPS) then the library should reflect this

changes (e.g. change the proper toolchain). Using the Buildroot packaging system the compilation is

done according to the entire system specification transparently, which is a more portable, time effective

and organized process.

To create the intended AX.25-library buildroot package, one mk (containing the compilation informa-

tion) file and a patch was produced. Since the AX.25-library original code6 is not directly compilable by

the actual buildroot configuration, one patch had to be created. This code patch allows the setpgrp()

function availability verification bypass on the original configure script. Since this system is intended to

be single-user and no extra worry with file permissions are needed, the lack of this function that changes

the process group id it is not important and therefore can be ignored. Fig. 4.6 illustrates the major steps

performed by the created AX.25-library buildroot package.

Figure 4.6: AX.25 package integrated into buildroot framework.

The same strategy was followed for the AX.25-tools software, except the patch use which was not

necessary. These created buildroot packages were submitted to the buildroot project to make the soft-

6Original code can be found on http://www.linux-ax25.org/ - accessed on 13-10-2012
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ware widely available to all buildroot users and developers.

The resulting final rootFS image takes 1.5Mbyte of storage capacity.

Finally, the boot-loader used was the Das u-boot 7. This boot-loader can perform the functionalities

described in chapter 3, namely those depicted in Fig. 3.10. Other boot-loader alternatives exist, but

since this one supports the intended design features with simple configuration, it was the one that was

used.

4.1.3.B Beacon software and Primary Satellite Interface Software (PriSIS)

Here, we highlight the most important implementation strategies and decisions taken on both the

beacon software and PriSIS. The discussion follows a bottom up approach in terms of network layers.

Fig. 4.7 shows a complete overview of the entire PriSIS solution. This figure is an extension of Fig. 3.3

on chapter 3. The beacon software, using only the layer 2 functions is the most simple one and it is

the firstly discussed. After this, the remote command implementation, which uses both layer 2 and 3 is

presented. Finally, the imagery service implementation is described.

Figure 4.7: Complete network stack overview

7http://www.denx.de/wiki/U-Boot/ - accessed on 08-09-2012

55

http://www.denx.de/wiki/U-Boot/


Beacon and inter-system connections

The onboard beacon software (designated as pulsar ) is a daemon process that injects into the

downlink, thanks to the AX.25-library, the available information about the current satellite health.

The pulsar daemon uses the berkeley socket standard primitives to inject the collected telemetry

into the AX.25 kernel module.

1. s = socket(AF_AX25, SOCK_DGRAM, 0);

2. bind(s, (struct sockaddr *)&src, slen);

3. message = get_telemetry_data();

4. sendto(s, message, strlen(message), 0, (struct sockaddr *)&dest, dlen);

The first statement asks the kernel to create a socket file descriptor using the AX.25 protocol for a

datagram. Using a (DGRAM) connection the kernel will send and receive the intended UI frames over

this socket. The bind() primitive in the second step will assign the local AX.25 address (callsign)

to the socket. Note that this src structure was previously encoded by one omitted AX.25-library

primitive ax25_aton() for endianness compatibility. An infinite loop encloses the last two steps

which are triggered every 5 seconds. This loop will finally send the telemetry data through the

spacelink. The pulsar grabs the required telemetry information from the /proc/ directory using

the sysinfo() primitive declared on sys/sysinfo.h.

The code for receiving AX.25 UI frames follows the same structure as the sending one (us-

ing berkeley socket API). The socket() parameters PF_PACKET/SOCK_PACKET allow a raw based

packet reading at the device level. This is used in the reception code because, apparently with

the AF_AX25/SOCK_DGRAM socket configuration, the kernel do not pass to the program the received

frames, maybe due to a kernel module or AX.25-library bug. After the correct payload reception

from recvfrom() primitive, the GS application can now parse the frame payload, extracting the

telemetry contents and display it to the GS operator. Fig. 4.8 shows the GS computer decoding

the telemetry.

Figure 4.8: GS software decoding telemetry beacon

The COM also interacts with C&DH using the I2C protocol over the PC/104 bus. On the COM side,

this communication is made using the Linux kernel interfaces. This device was correctly detected

by the kernel because the AT91 Linux kernel patch was previously used. The I2C device is handled

by the linux/i2c.h library as a generic file descriptor, relying on the kernel all the underlying
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protocol specificities. There are other I2C driver implementations. The linux native driver was

used, mainly because it works as expected (meaning it is compatible with C&DH software) and

is accessible by a clean and standard system interface. The COM interconnection with C&DH is

done in a straightforward way, through a system file descriptor, as follows:

1. device_file = open(filename,O_RDWR)) < 0);

2. ioctl(device_file,I2C_SLAVE,slave_address) ;

3. write(device_file,buffer,2) != 2);

4. read(device_file, buffer, 80) != 80);

The first instruction opens the system device (pointed by filename) with read and write permis-

sions, returning the intended file descriptor. Then the file descriptor is configured to talk with a

slave node identified by slave_address (which is the C&DH on this case). Finally, the third in-

struction writes the output buffer to that descriptor and waits for the incoming expected C&DH

response in instruction four.

Remote Command Service

The PriSIS implements the command reception/response and imagery gathering functionalities,

using the CSP and T-CSP protocol. Since the PriSIS command/response functionalities are more

critical than the telemetry, a higher scheduler priority is assigned to these functions taking advan-

tage of the Linux soft real-time capabilities8. This is the best solution to ensure some scheduler

process prioritization here. Other options are available, such as using the rt-preempt patch9. This

patch changes the kernel in order to become a full Real-Time Operating System (RTOS), but un-

fortunately there are no support for the used kernel version. Some experiments with different patch

versions were made but they prove to be very inadequate because they highly impact the overall

system performance. Therefore, the use of rt-preempt patch was abandoned. Yet another solution

is available, which is Xenomai10 but it seems to be not very portable as it requires both library

and system recompilation (with its own API) to work properly. Therefore, as a final solution, the

PriSIS software runs with a high scheduler priority over the remaining running process without the

certainty of access the processor as soon as it needs.

According to the protocol architecture, the PriSIS must implement the command reception/response

mechanism over the CSP / AX.25 network stack as shown in Fig. 3.3. The CSP implementation

is widely available11 as an user-space library (libcsp) under the LGPL licence. This implementa-

tion currently does not support the AX.25 protocol. To overcome this lack of interoperability one

8Meaning that a running process cannot be preempted by another high priority process
9https://rt.wiki.kernel.org - accessed on 13-08-2012

10http://www.xenomai.org/ - accessed on 13-08-2012
11https://github.com/GomSpace/libcsp - accessed on 19-08-2012
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CSP-AX.25/UI driver was added to the csplib implementation. Fig. 4.9 depicts the details on this

cross-layer driver implementation. This figure (Fig. 4.9) shows the details associated with layer 2.5

illustrated in Fig. 4.7.

Figure 4.9: AX.25 / CSP driver implementation

When a AX.25 frame is received from the spacelink, the kernel module delivers it to the AX.25

socket (which was previously armed inside the reception thread). This reception thread reads the

frame contents and extracts the CSP packet from its payload. After this, the reception thread in-

serts the CSP packet into a proper csplib packet structure (csp_packet_t) to be later processed

by the router engine (implemented by csplib). When a packet is sent in the opposite way (e.g. a

command response from PriSIS) the router engine delivers it to the driver transmit function. This

function calls a mapper routine which is responsible for translating the destination CSP node iden-

tification into the AX.25 address (which is represented in a callsign plus Secondary Station Iden-

tifier (SSID) format). This process has the same objective as Address Resolution Protocol (ARP)

found on typical IP networks. The mapping information is available in a static way (provided in

compile time like the CSP node ID) due to the high communication restrictions imposed by the

spacelink. On a such constrained link it is not to practical to implement a dynamic resolution pro-

tocol because it requires an undesirable extra message exchange. After this cross-layer mapping
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the transmit function encapsulates the CSP packet into the AX.25 payload to be latter sent to the

kernel module. On both ways (incoming and outgoing), the network endianness compatibility is

assured by the respective htons() / ntohs() primitives.

The native CSP implementation smooths the code compilation/configuration process through a

waf script12. In addition to the new AX.25/CSP code that was integrated into the native csplib,

the waf script was also extended to include this new AX.25 support. Therefore, no extra step is

required when the csplib needs to be compiled with a AX.25 support.

The PriSIS module relies on this new CSP/AX.25 driver to perform the GS-Satellite command/response

mechanism. The PriSIS main program flow is presented in Fig. 4.10

Figure 4.10: PriSIS boot and operation sequence.

On the first step, the PriSIS allocates memory for 20 packets with 300 bytes each. This memory (6

Mbytes) will be later used by AX.25 driver and by the router engine to handle the incoming/outgoing

packets. Then, on step 2, the software will initiate the CSP stack, passing the local CSP node ad-

dress. On step 3, the AX.25 driver is started, giving the location for AX.25 port as argument. After

this, a CSP socket is created. Next, on step 5 the socket is associated with an application port

(port 10 was assigned to PriSIS). On step 6, five possible simultaneous connections are allocated

and the socket state is moved to accept state (step 7). Since the socket must be continuously
12http://code.google.com/p/waf/
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active, when the configured timeout is reached (lacking of connections) the step 7 is re-executed.

The blocking primitive on the step 8 returns the received CSP packet from the incoming connec-

tion. Finally the CSP packet carrying the GS command is ready to be processed on step 9, where

the CSP command structure (described in Fig. 3.5) is parsed and the command executed. Af-

ter this command execution the PriSIS sends back to the GS an acknowledgement carrying the

success/error code together with the GS counter.

One GS application was also developed to allow the interaction with PriSIS by a remote GS opera-

tor. This solution also implements the same CSP/AX.25 stack as PriSIS do. After the GS software

being initialized it asks the operator for a command which will be properly encoded and sent to

PriSIS. Fig. 4.11 illustrates the GS software asking PriSIS about the on-board beacon status, is-

suing the function number 3. After that a CSP command is sent through the space-link with the

clock id 3 in this case. The PriSIS response back with the message beacon is not running together

with the same clock (3). Next the GS operator issues the Beacon on function repeating the CSP

process but now with clock id 4, and PriSIS replies back with a successful code.

Figure 4.11: GS software interacting with PriSIS software on-board satellite

The GS software also allows the operator to ask for imagery transmission (function 10).

Imagery gathering

The Fetch All Images function will be encapsulated as a normal CSP command. After this com-

mand is correctly received on PriSIS, it will trigger a Tolerant-CSP (T-CSP) transmission, sending

all the onboard saved images to the GS. The T-CSP protocol is an extension to the already imple-

mented CSP/AX.25 stack functions. It relies on the already developed primitives adding the new

fragmentation and recovery functionalities. The developed T-CSP services are available through

the T-CSP API functions presented in Fig. 4.12.

Fig. 4.13 shows how either t_csp_send_frag() and t_csp_send() interacts with the CSP library.
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int t_csp_send_frag(char *path, int part, int dst_id, int dst_port);

int t_csp_send(char *path, int dst_id, int dst_port);

char * t_csp_recv(csp_socket_t *socket, int local_port, int *ret_s, int *f_nr,

int delay);

Figure 4.12: T-CSP available functions

Figure 4.13: CSP to T-CSP interactions

When a Get all images function is received by PriSIS from the GS, it calls the T-CSP primitive

t_csp_send(). This primitive abstracts the file operations, (e.g. open) and fragment each im-

age file. After this, each fragment is passed to the underlying CSP send() primitive together

with its T-CSP header. When the GS software requests for segment retransmission, the T-CSP

t_csp_send_frag() is executed. This function locates the required file and extracts from it the

piece of lost information. Before this, a T-CSP header is added and the complete T-CSP segment

is passed to the CSP send() instruction, which sends back to the GS the missing segment. On

the GS software this lost segment will be received by the t_csp_recv() function. This function

abstracts the recovery process (using the SNACK approach described on chapter 3) such as de-

tecting a segment lost, asking PriSIS for a new segment retransmission or link disruption detection.

The t_csp_recv() locking function only returns to the application when a new file is completely

received, or when the GS operator decide to abort due to e.g. hard link disruption occur or the

communication contact opportunity is lost. When such heavy disruption occurs, the GS operator

is informed about the number of segments received and missing, which allows him to decide if it is

reasonable to keep the retransmission process.

Fig. 4.14 displays the GS software receiving one image from the satellite using the T-CSP protocol:
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Figure 4.14: GS software receiving a satellite sample image using T-CSP protocol.

4.1.3.C C&DH Operating system and applications

According to the software design for the C&DH subsystem it must run the FreeRTOS Operating

System. The FreeRTOS for MSPGCC toolchain is being ported to the MSP430F5438A MCU by the

FreeRTOS project. This common available port13 was tailored to support the moteist++s5 platform.

Since FreeRTOS code structure uses a Hardware Abstraction Layer (HAL) to implement the platform

specific code, which is MCU independent, a new moteist++s5 HAL for FreeRTOS was created. This

new FreeRTOS moteists5++ HAL contains the major platform configuration and the external peripherals

functions implementations. Fig. 4.15 illustrates the most important prototypes found on the new HAL

(located at MSP-430F5438_MOTEIST_HAL/hal_board.c).

1. void halBoardInit(void);

2. void hal_i2c_init_slave(unsigned char my_addr);

3. void hal_setup_uart_9600_8N1(void);

4. void hal_setup_leds(void);

Figure 4.15: FreeRTOS/moteist++s5 HAL major functions

The first function configures the default I/O port states according to the MCU manufacturer directives.

The second function configures the platform to work with the I2C protocol in slave mode. Here, the

I2C RX and TX pins on the moteist++s5 are mapped on the MCU port 3 bit 7 and port 5 bit 4, and

the required interrupts are enabled. The third function configures the MCU UART for 9600 baud rate

taking into account the moteist platform port layout. The fourth, follows the same logic from the last

three functions as it instructs the FreeRTOS about the correct LED port/bit locations. With this platform

13https://github.com/pabigot/freertos-mspgcc accessed on 19-08-2012
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supported, the FreeRTOS can be used in a standard way using this platform abstraction code.

With the required moteIST I/O peripherals supported in FreeRTOS, the real-time application can be

deployed. The developed application implements the redundant beacon function as well as the incoming

I2C data processing (e.g. from the COM subsystem). Beyond this functions, the application also receives

simple serial commands from the Analog COM subsystem, namely the Data Framer component, replying

with an ACK message if the command is correctly received. Fig. 4.16 depicts the C&DH application

structure.

Figure 4.16: FreeRTOS C&DH software structure.

Firstly, the C&DH application configures the hardware peripherals using the developed HAL for

moteist. After this, it creates three FreeRTOS tasks, vProcessI2CData, vBeacon and vIdle. Real-

time tasks are well suited for this scenario, because they are a simple way to implement the previously

described functions in a full real-time way. As alternative to real-time tasks, the FreeRTOS also provides

Co-Routines, which are processed by the FreeRTOS scheduler according to a cooperative algorithm.

This is not a desirable behaviour, because a co-routine cannot be preempted by another co-routine and

the full real-time characteristics are lost. The vProcessI2CData task processes the received command

buffer that is filled by an Interrupt Service Routine (ISR) assigned to the I2C data reception interrupt.

This ISR is triggered when the MCU receives serial data correctly from its USART. The vBeacon task

injects into the UART transmission buffer the beacon message string every 4 seconds when the Heart

unit is running on the safe-mode profile. The UART data reception interrupt is assigned to an ISR which

stores the received commands from the space-link into the AX.25 command buffer. After the correct
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command reception, it replies with an ACK message through the space-link, confirming the correctness

of the received command.

Fig. 4.16 also illustrates how the real-time application handles the Low-Power Modes (LPMs) usage.

Since the vIdle task is configured with the lowest scheduler priority it will run when there are no other

tasks waiting to take processor time. Therefore, the vIdle task is programmed to put the MCU in the

most energy conservative state - LPM-0. The MCU is awake back to active mode when some system

interrupt occur. An MCU timer is configured to trigger an interrupt periodically. This interrupt will execute

another ISR which will process a new scheduler decision. This will force the MCU to awake back to

active mode periodically, allowing the stopped tasks to run again if it is necessary. With this strategy

(put the MCU in LPM-0 when there are no real-time tasks to be processed) the overall C&DH power

consumption decreases if the MCU is not under over-utilization.

All three real-time tasks are different in terms of importance within the application. The following task

priority strategy was configured (most important first):

1. vProcessI2CData - This is the most important task, therefore it will always win processor time when

it needs. This is considered the most important one, because it processes the inter-subsystem

communications which can be for example an ADCS command to change the satellite attitude.

2. vBeacon - Intermediate priority, because it is not a critical instruction.

3. vIdle - Lowest priority, responsible to put the MCU in LPM-0. Executed when there are no other

tasks waiting to run.
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5
Experimental evaluation

In order to validate the reliability, functionality and quality of the developed solution, one set of tests

were performed for the Hear Unit. Since the Analog COM subsystem is currently under research and

the intended radio link characteristics are difficult to emulate in the laboratory, the space link was ab-

stracted using a serial connection from the GS computer to the COM subsystem. The same method was

also applied to interconnect the C&DH subsystem with the GS computer. The lack of realistic physical

conditions on this important link, makes the test accuracy hard to achieve. The test design phase had

this fact into account together with the requirement specifications, specifically the safety-critical points,

and produce two main test groups. On one hand, the first test group aims at the solution’s performance

evaluation, where both base systems (C&DH and COM Operating System (OS)) and intended network-

based functionalities were evaluated. On the other hand, the second test group targets the solution

quality validation for safety-critical environments. This second test group was formalized taking into

account some directives found on NASA Software Safety Guidebook (GB-8719.13) [63].

The main test scenario, illustrated in Fig. 5.1, is capable of testing both redundant operation profiles

(normal mode and safe-mode). When normal mode is being tested, the serial connection with the COM

will be used. Otherwise, for the safe-mode tests, the C&DH serial connection is used.
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Figure 5.1: Test scenario

5.1 Performance evaluation

Taking into account the intended requirements for both COM and C&DH subsystems, this section

will focus on presenting an evaluation about the solution’s operational behaviour. This performance

tests were mostly formulated taking the grey-box approach.

5.1.1 COM Subsystem

Besides the fulfilled energetic requirements, this subsystem must meet the remaining tight require-

ments described in section 3.1. Some system statistics were collected from the intrinsic COM diagnos-

tic mechanism - telemetry beacon - which serves as the behaviour information source. Firstly, Fig. 5.2

shows how much flash storage is required for the entire COM software solution.

Figure 5.2: Flash memory utilization

As the graphic shows, the total required flash storage space is 3.6 Mbytes. This information was
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collected from the boot-loader memory organization. The COM software systems roughly takes 37

seconds to be launched when electrical energy becomes available. This time (31 seconds) is mainly

taken by the Linux kernel boot operations and rootFS init.d scripts. The remaining time is used by the

boot-loader itself in copying the software from Flash to SRAM and performing the CRC operation over

the kernel image file. The shutdown time takes about 3,7 seconds using the system ordered shutdown

halt method.

Furthermore, the SRAM utilization was also evaluated. Fig. 5.3 shows the SRAM occupation after

the system is ready for operation. This information was collected from the telemetry beacons gathered

by the GS computer which has the developed telemetry decoding software installed. All the telemetry

sent though the space-link immediately after the system is powered up was decoded and stored within

a period of 3 minutes (recall that telemetry is sent every 5 seconds). Within this period the COM had

all software functionalities available, but there was no extra processing request issued by the GS (e.g.

command request). The GS only passively monitors the telemetry data.

Figure 5.3: SRAM utilization after system boot.

From all the SRAM available (roughly 32 Mbytes) only 43% (12.6 Mbyte) is occupied when the

subsystem is idling.

Apart from the storage (Flash) and working memory (SRAM) utilization the CPU state was also

monitored within this period. Since the telemetry beacon carries also the average CPU load information

provided by the Linux kernel. This parameter was also analysed. The result is summarized in Fig. 5.4.

Fig. 5.4 shows two different loads. One average load was evaluated based on the last minute CPU

load and another based on the last 5 minutes. Every 5 seconds the telemetry beacon reflects these two

values. Actually, the beacon carries three different average load values, measured over one minute, five

minutes and fifteen minutes intervals. However, for the 3 minute test, the fifteen minutes interval was

discarded. The Linux kernel measures this system load based on the correlation between the number

of waiting process in the processor’s queue and the number of CPUs available. The first telemetry
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Figure 5.4: CPU load average after system boot.

information collected suggests that the CPU is under-utilized by ≈77.5%, on average, over the last

minute (which encompass the remaining boot operations after the kernel is ready). After this stressed

period, the CPU will drop to a further lower level of utilization. On idle, the entire COM subsystem only

demand about 3,5% of CPU utilization. We saw in section 4.1.1 that this subsystem carries a 180MHz

CPU. In this graphic the 5 minute average load shows a slight trend (but somehow inaccurate at the

beginning due to lack of all 5 minute information) about this low CPU usage that will eventually converge

to the values associated with the one minute average load. These good performance benchmarks shows

that both the utilized SRAM and CPU power meet the system boot process requirements.

The described SRAM and CPU load tests were repeated on other expected scenarios, but with a

larger time scale - 5 minutes. The next test tries to evaluate how much the PriSIS software will impact the

overall system performance. To achieve this, the PriSIS process was killed and the telemetry monitored.

Fig. 5.5 depicts that situation where, comparatively with the graphic in Fig. 5.3, there is no substantial

RAM occupation reduction. This means that PriSIS only occupies a few bytes in RAM, and almost all of

the available RAM is used by the kernel and rootFS operation.

Figure 5.5: SRAM usage without PriSIS
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The same behaviour is observed in the CPU load. The comparison between the one minute average

from Fig. 5.4 and the one in Fig. 5.6 leads to the conclusion, that the load decays about 90% from the

initial value. The analysed load values are very low and therefore it is possible to conclude that this

software solution is able to run on a even a low-end class of CPU.

Figure 5.6: PriSIS software impact on CPU load

The next scenario tested consist in consecutive commands issued by the GS operator. Fig. 5.7

shows that SRAM utilization starts increasing but at some point in time seems to stabilize around the

55%. This stabilization gives a clue that probably there are no memory leaks on the PriSIS code (this

aspect will be discussed later).

Figure 5.7: RAM utilization over continuous command handling

The same behaviour is observed in the load values in Fig. 5.8. As long as more and more GS

commands arrive at PriSIS, it requires more processing power to deal with them, thus raising the load
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values to around 65% of CPU utilization.

Figure 5.8: CPU loads over continuous command handling

This high stressful scenario, which maybe is unlikely to happen in a real-world setting, it is not yet

the killer application in terms of COM processing power and memory characteristics.

A likely stressful scenario is the transmission of the on-board stored pictures. Fig. 5.9 highlights the

normal behaviour on RAM utilization when the T-CSP functionalities are being used. This is another

good sign about no memory leakage on the PriSIS software when performing fragmentation.

Figure 5.9: RAM utilization when transmitting an image

Fig. 5.10 shows that, like the RAM occupation, there is no excessive system load increase.

Another aspect that was taken into account was the developed T-CSP time efficiency. Fig. 5.11

shows how much time T-CSP takes to transmit a set of segments when some disruption occurs in the

space-link. This test was performed, using a 1200 bit/s serial connection for two possible different

window verification sizes (x = 1 and x = 51 ). These two sizes were chosen as a way to produce an
1x is the missing segment window size that reflects the maximum number of unreceived segments in a burst segment transac-
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Figure 5.10: CPU loads over image transmission

evident contrast between these opposite (minimum and large) window sizes. The T-CSP receiver (GS

on this case) timeout was configured to be 2,1 seconds since the frame time (with maximum payload)

is about 1,8 seconds. Also, the t_csp_recv() was slightly modified for this test in order to auto-accept

the retransmission process when the timeout was reached, bypassing the possible user-defined delay

to trigger the retransmission mechanism. The abscissa axis in Fig.5.11 represents the number of lost

segments during multiple file transmissions. These lost segments were originated by unplugging the

serial cable during multiple file transmissions, each transmission with different number of lost segments.

The ordinate axis represents the time spent by T-CSP to transmit a sample image with ≈18Kbytes which

require 75 segments.

Figure 5.11: File transmission at 1200 bit/s using T-CSP facing link degradation.

As Fig.5.11 illustrates, the lowest window verification size (x = 1) is more time efficient with these

low bitrates. This confirms the initial thoughts from the design phase. It is also possible to conclude,

that the minimum time required to receive this 75 segment sequence at this bit-rate is a little less than

tion and relative to the last correctly received segment
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3 minutes. This naturally occurs when there are no segment retransmissions. With x = 5 worse timings

are obtained. This as to do with the foreseen unnecessary link over-utilization, since multiple useless

retransmission are issued on the uplink. During this test (x = 5) was also obvious that PriSIS buffers

become easily full and then some retransmission messages were discarded due to RAM overflow. Note

that for x = 5 values, after 25 segments lost, it is more quick to ask for a full file retransmission (which

takes about 3 minutes) than trigger the retransmission process (which takes roughly 6 minutes and 30

seconds). Asking for a full file retransmission saves about 30 seconds in this case. It is also clear

that for x = 1, the worst case scenario (when almost all segments are lost - 74 in this case) is still

advantageous the use of the T-CSP retransmission, rather than ask for the entire image retransmission.

This efficiency gain regarding the x = 5 window as to do with less uplink utilization and fastest missing

fragment verification on the GS software. With x = 1 the PriSIS buffer not overflow, which also makes

the entire retransmission fastest. Finally, if an expected satellite orbit is such that allows 20 minutes of

communications opportunity, about 500 segments (≈ 120 Kbytes of effective data) can be transmitted

under optimistic conditions (without retransmissions).

Fig. 5.12 represents the same test but using a 9600 bit/s bitrate. In this test the T-CSP t_csp_recv()

timeout was reduced to 500 milliseconds since the frame time (with maximum payload) is about 0,23

seconds.

Figure 5.12: File transmission at 9600 bit/s using T-CSP facing link degradation.

The figure shows that the minimum time spent to transmit the 75 segments is ≈ 19 seconds when

there are no segments lost. The graphic shows also that the x = 1 window have a loss of performance

when compared to the x = 5 case above the 40 segments mark. At this higher bit-rate the PriSIS hardly

becomes overflowed (actually during the 9600 bit/s tests it never did) and also the problem associated

with large window sizes is attenuated in terms of time impact. On one hand, above the 40 segments

lost, it seems the x = 5 option allows a quicker response from PriSIS which is compensatory even with

some duplicated messages transmitted. On the other hand, for x = 1, every lost segment will trigger a
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timeout, while for x = 5 it does not happen, speeding up the process. At this bitrate, on the worst case

scenario (when about 74 segments are lost, using x = 1), about 1 minute and 30 seconds are required

to transmit the entire 75 segment sample image. Under an optimistic scenario (no segments lost) during

a 20 minute communication opportunity orbit ≈ 5000 segments can be transmitted allowing up to 1.2

Mbyte of effective data transmission.

5.1.2 C&DH Subsystem

The C&DH subsystem is difficult to test since it is a highly integrated platform. Unlike the COM, the

C&DH does not have an intrinsic performance report mechanism (as the telemetry beacon on COM)

and the installed RTOS debugging over the Joint Test Action Group (JTAG) programmer is very difficult,

due to the preemption mechanism. The entire C&DH software solution (FreeRTOS OS, HAL func-

tions and C&DH application code) consumes 7Kbytes (2.7%) from the 256Kbyte available flash on the

MSP430F5438A MCU. This utilization is acceptable and does not limit future C&DH software enhance-

ments. This value is gathered from the ”text” field in the output of size command, described in Fig. 5.13.

The size command is available on the MSP-GCC toolchain.

$ msp430-size cdh.elf

text data bss dec hex filename

7150 4 10530 17684 4514 cdh.elf

Figure 5.13: C&DH binary size information

Besides the Flash memory, the C&DH software RAM utilization is hard to evaluate on compile time.

The output illustrated in Fig. 5.13 shows that at least 10534 bytes (64%) of RAM (bss segment + data

segment sizes) from the 16384 bytes available is required. Note that the bss segment stores statically-

allocated uninitialized variables where the data stores the global and static initialized variables. This

does not include the runtime/dynamically allocated memory. One evident missing case here is the RAM

required by the tasks. Since the C&DH software uses three different FreeRTOS tasks (idle, I2C and

UART tasks), and they are configured to use the configMINIMAL_STACK_SIZE directive which implies

120bytes per task stack, they will require more 360 bytes. Therefore, it is more accurate to predict the

minimum RAM requirement for this solution with 10530 + 4 + 360bytes ≈ 10.6Kbytes. This represents

66.25% of all the MCU available RAM (16Kbytes). This RAM calculations give a clue about the C&DH

software solution requirements. The ”dec” and ”hex” fields on the output described on Fig. 5.13 are the

total file size in decimal and hexadecimal formats, respectively.
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5.2 PriSIS and beacon software safety/quality

This section describes the required procedures taken to assess the safety and quality of the Heart

unit developed software solutions. The code inspections and tests were mainly engineered taking into

account the directives found on NASA Software Safety Guidebook (GB-8719.13) [63].

The most important software applications developed for the Heart unit was the PriSIS and the beacon

software aboard the COM subsystem. With this in mind, a larger test effort was employed on these

software components to ensure its quality and reliability. The first test was the code visual inspection,

taking into account the guidelines, precautions and standard verification processes found on [63, p.

214-218]. These guides state the limitations and problems with C language, programming C standards

and the ten commandments for C programmers. This document also provides a ”Good Programming

Practices Checklist” [63, p. 384-388]. All of this information is summarized and described in the next

points.

• Verify read medium contents - The U-boot bootloader is instructed to perform CRC calculations

over the Linux kernel image (which encompass the vital subsystem software function) before ex-

ecuting it. This ensures that all kernel image contents are righteous which low the hypotheses of

execute wrong code that can triggers potentially wrong/unexpected behaviours.

• Use watchdog timers - This function may be useful to recover from unexpected system crash,

but it is not implemented because it would require creating the AT91RM9200 hardware watchdog

interface.

• Use Stack Checks - A special care about the stack boundaries was taken. First, both pulsar and

PriSIS were compiled with the GCC stack guard functionalities -fstack-protector-all which

implies a little code overhead to protect against buffer overflows such as stack smashing problems.

This protection was correctly installed on PriSIS but only with the glib version. Unfortunately the

µClibc does not provide such kind of feature. So the buffer overflow problems were avoiding by

using the more secure memory C primitives such as snprintf() or memmove(). This primitives

allow a more strict control over the number of bytes copied which helps avoiding such kind of

problems.

• Initialize memory - All the dynamic allocated buffers were previously initialized with empty pattern

’0’ to enforce the correctness of later readings.

• Do not implement ”one big loop program” - The biggest loop present on the code is the PriSIS

CSP command id match function. The remain developed code implements every functionality on

a separated function.
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• Avoid indiscriminate use of interrupts - The Linux kernel abstracts the interrupt handling to the

application. There are no explicit interrupt-based functions on the developed code.

• Provide a orderly system shutdown - Since the PriSIS and pulsar are called on the boot, it won’t

require special shutdown functions.

• Always initialize the software into a known safe state - The rootFS image recorded into the

flash memory is immutable. This practice will allow the system to revert to a secure state after a

reboot if something unexpected occurs.

• Special care with thread-based programs - The PriSIS relies on a thread to wait for incoming

AX.25 frames carrying CSP packets. This thread is created by the developed AX.25/CSP driver

which processes and injects into the CSP routing engine the arrived CSP packets. The inter-

thread communication (between the driver and the router engine) is done by the CSP primitive

csp_new_packet(), which later calls pthread_queue_enqueue() primitive that will enqueue the

new packet using the required mutual exclusion mechanisms. This inter-thread communication

seems to be well formulated and brings more confidence about the resilience against e.g. possible

packet queue race-conditions.

• Do not implement delays as empty loops - The rationale behind this question as to do with

incoherent effective delay time among different architectures, compilers, etc. There is no such

practice on the developed code, where the used delays are abstracted by the CSP primitives

which relies on pthread_* intrinsic time mechanisms.

• Protect against out-of-sequence transmitted messages - The only inter-system message ex-

change is done within the space-link, from GS to PriSIS. The CSP-based space-link command

transmission carries a logical clock into the message command which allows the GS software track

back which received ACK belongs to each issued command.

Beyond the above described visual and conceptual verification test, the document [63] also suggests

a set of tests that can be automated by some widely available test tools. These tests are grouped into

statical analysis, which are done against the source code without executing the produced binaries, and

dynamic analysis which are performed while executing the compiled binaries.

5.2.1 Static analysis

The first static analysis tool used was the intrinsic GCC compiler warning enforcement by activat-

ing the flags -Wstrict-prototypes -Wmissing-prototypes -Wmissing-declarations -Wall on the

respective makefiles. This flags enforce a more strictly code production which avoids later problems.

The final PriSIS and pulsar are compiled without any relevant GCC errors/warnings.
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Both PriSIS and pulsar software were also inspected using a lint program called splint2. This static

analysis tool reported a lot of possible errors on the produced code. The Fig. 5.14 gives an example of

one of the bugs found by the splint tool:

pulsar.c:58:12: Fresh storage portcall not released before return

A memory leak has been detected. Storage allocated locally is not released

before the last reference to it is lost.

Figure 5.14: Splint tool example of error detection

This particular bug, as the description suggests, is a memory leak which was corrected by freeing

the portcall pointer with free(portcall) primitive. All that major problems that were not detected by

the GCC compiler enhancement flags, and that were highlighted by the splint tool, were corrected.

5.2.2 Dynamic analysis

This group of tests are composed in this case by two different tests: code profiling and runtime

memory check analysis. On one hand, code profiling produces a dependency map in terms of func-

tion execution flow proving also the time spent on each executed function. This is useful to realise

which are the functions that can be enhanced in terms of execution performance. On the other hand,

the memory check analysis allows a detailed inspection over the runtime used memory, reporting the

inefficiencies/problems associated with it. Both tests were made using the valgrind3 tool.

Since it is hard to put the valgrind tool running over the COM system due to the lack of storage

memory, the PriSIS and beacon software were compiled also for the x86 architecture (host architecture).

With this x86-based PriSIS and pulsar binaries, it was possible to run these tests on a separated the

x86 machine that will emulate the COM hardware. Running the tests over a different CPU architecture

is the least worst solution available that allow both these tests. Fig. 5.15 shows how valgrind tool was

used to start the profiling test on PriSIS on the x86 machine:

$ valgrind --tool=callgrind --dump-instr=yes \

--simulate-cache=yes --collect-jumps=yes ./PriSIS-x86

Figure 5.15: Valgrind as profiler tool.

2http://splint.org/
3http://valgrind.org/
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Here the callgrind is the profiling tool available from valgrind suite and the --dump-instr=yes

allows output of assembly annotations. When the valgrind/callgrind is running it invokes the PriSIS

that will wait for CSP commands. When PriSIS is waiting, the GS operator issues one photo request

command followed by four generic commands (such as beacon toggle) plus another two photo request

commands in a row. After this sequence of commands the valgrind produced one output file which

is later analysed by a graphical tool called kcachegrind4. Fig. 5.16 shows the relevant information

captured from the kcachegrind report:

Figure 5.16: Kcachegrind output.

The Incl - Inclusive - and Self columns represents each function cost in terms of time and CPU

usage. The Inclusive Cost represents the cost of all functions that are called from the current function,

while the Self Cost represents the cost for that particular function. Observing the values in the Fig. 5.16,

it is clear that the most heavy (with 6.04% as Self Cost) function is the csp_ax25_tx, which belongs to the

basic primitive implemented by AX.25/CSP driver to send CSP packets encapsulated in AX.25 frames

over the radio link. After some inspection on the csp_ax25_tx() implementation it was concluded that

this high Self cost was originated with high probability by these four functions:

The highlighted four routines above are responsible for CSP packet encapsulation over a temporary

buffer that will later be transmitted using the AX.25-lib sendto() primitive. These functions are processor

and I/O exigent since they are intended to allocate new memory space from the heap (step 1), cleaning

the new space (step 2) and copy the CSP packet contents into the new memory space (step 3 and

4). Note that the CSP packet header (packet->id.ext) is required to be previously converted into a

network endian format using the proper CSP primitive for that effect - csp_hton32(packet->id.ext);,

4http://kcachegrind.sourceforge.net
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1. txbuf = (char *) malloc(packet->length+CSP_HEADER_LENGTH);

2. memset(txbuf, 0, CSP_HEADER_LENGTH+packet->length);

3. memcpy(txbuf, &packet->id.ext, CSP_HEADER_LENGTH);

4. memcpy(&txbuf[CSP_HEADER_LENGTH], &packet->data, packet->length);

Figure 5.17: CSP packet encapsulation.

before the packet was sent. All these functions ensures that each CSP packet structure information

is sent in the right order. It was not found a more efficient workaround for these 4 packet processing

instructions. It is possible to bypass the second step, but by doing that the good programming directive

”Initialize memory” will not be met.

The next test is the run-time memory inspection, which mainly tries to find obfuscated memory leak-

age in the developed code. This test was also performed using the valgrind tool as Fig. 5.18 depicts:

$ valgrind --tool=memcheck --leak-check=yes --show-reachable=yes \

--track-fd=yes ./PriSIS-x86

Figure 5.18: Valgrind as memory inspection tool.

After the PriSIS enters in the wait incoming packet’s state, the same CSP commands from the pre-

vious test was sent to it. First, the image request command, which will trigger the T-CSP functionalities

followed by four CSP commands, e.g. beacon on/off and another two image request commands. With

this sequence of events all the PriSIS functionalities were called allowing a complete memory utilization

behaviour report. The final inspection summary is described in Fig. 5.19.

The heap summary shows that 12.386 bytes are under used when the test is over (when PriSIS

process was explicitly killed). The leak summary shows that at the moment that PriSIS was killed 12.114

bytes are still reachable. This reachable bytes are the required working memory, such as CSP buffers

allocated from csp_buffer_init(20,300); , etc. This 12.114 bytes are not critical, taking into account

that PriSIS was hard killed with sigkill signal, which avoids the software to release its working memory

at that particular time. There are no definitely and indirectly lost memory and that is a good sign, which

will approve the intuition on critical memory leakage inexistence previously discussed on Fig. 5.7 and

Fig. 5.9 commentaries.

Finally, the last test made was the space-link fuzz test. This test consists in injecting random data

through the space-link targeting the PriSIS software. This random data is encapsulated into AX.25 UI
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==21233== HEAP SUMMARY:

==21233== in use at exit: 12,386 bytes in 33 blocks

==21233== total heap usage: 980 allocs, 947 frees, 133,613 bytes allocated

==21233== LEAK SUMMARY:

==21233== definitely lost: 0 bytes in 0 blocks

==21233== indirectly lost: 0 bytes in 0 blocks

==21233== possibly lost: 272 bytes in 2 blocks

==21233== still reachable: 12,114 bytes in 31 blocks

==21233== suppressed: 0 bytes in 0 blocks

Figure 5.19: Valgrind/memcheck PriSIS report.

frames that will later be decoded by PriSIS. To automate this test one simple bash script, described in

Fig. 5.20, was made. This script was issued from the GS together with the telemetry decoder running,

allowing the satellite beacon gathering while the fuzz test is running.

#!/bin/bash

while [ 1 ]; do

/usr/sbin/beacon -s -d "CS5CEP-11" spacelink \

"‘cat /dev/urandom | head -c 256‘" 2>/dev/null;

done

Figure 5.20: Automated fuzz test.

This bash script collects 256 bytes from the urandom, which is a Linux random data generator device.

This 256 bytes are passed to the AX.25 beacon tool, which is a simple way of sending UI frames with

custom messages through the spacelink. The infinite loop was executed multiple times within different

periods: 60, 300, 600 and 1200 seconds. After each period, the PriSIS operational status was checked

using the GS software, sending one CSP command and expecting one response/ACK from it. This

stress test that also mimics high space-link noise, shows that PriSIS demonstrates resilience against

this stressful scenario acting as expected, discarding all the malformed CSP packets, and continuing

with an healthy operation status. The collected telemetry also confirms the proper operation in terms of

RAM usage and CPU loads.
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5.3 Discussion

Clearly this chapter gives more attention to the developed COM software, mainly the CSP/T-CSP

protocol implementations (PriSIS) and the on-board beacon software (pulsar). The COM subsystem

deserved more attention because it is where most of the software developments were made and also

because it is very difficult to test the C&DH subsystem due to the lack of debugging options and test

tools available.

Another difficult task was the test formulations taking into account some prior expertise found on the

specific documentation for safety/critical software development. Among all the documentation found, it

was necessary to choose and tailor some information subsets in order to meet the Heart unit project

task deadlines.

Beyond these developed tests, the Heart unit lacks integration tests. These integration tests must

inspect how well the C&DH and COM interacts with the remaining subsystems, such as the future EPS

and ADCS.

There were some extra worries on the entire solution compression/miniaturization which can, among

other benefits, keep good power energy consumption efficiency. Also there are some external physical

phenomena that were not considered since it was assumed that the physical cubesat structure can serve

as a proper shield against all possible hazardous events, such as high cosmic radiation.
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6
Conclusion and future work

The developed Heart unit presents a solution capable of handling the space-link communications be-

tween the ISTNanosat-1 and potential Ground Stations on Earth (Communications subsystem). It also

presents an ultra low power solution capable of acting as the satellite central decision unit (C&DH sub-

system). Both solutions were engineered taking into account the low space and power budget available

on-board. Actually, these Cubesat intrinsic restrictions shaped the entire hardware and software devel-

opments. On one hand, to meet the Heart unit requirements for the Communications subsystem it was

necessary to fully parametrize a GNU/Linux Operating System trying to minimize as much as possible

the scarce on-board resources utilization. On top of this GNU/Linux Operating System it was developed

the communications software (Primary Satellite Interface Software) which implements the space-link

network protocol details. The developed protocols allow a GS compatible telemetry beacon transmis-

sion, command reception from GS providing the required acknowledgements and imagery transmission

from the CubeSat. This PriSIS software implements the developed Amateur X.25/CubeSat Space Pro-

tocol driver as well as the new transport protocol called Tolerant-CSP. On the other hand, to meet the

C&DH subsystem requirements it was necessary to port the FreeRTOS version for TI MSP430F5 MCU

with the MSPGCC toolchain for the moteists5++ platform. After the moteists5++ FreeRTOS port was
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done, it was developed an energetic-awake solution which is capable of communicate with the remain-

ing subsystems using the system bus and implement, on future projects, the intended decision making

process, using the deployed real time scheduler.

Extra time was spent analysing the best COM solution. The first intention was to use the rt-preempt

patch1 over the COM Linux kernel to transform it into a full Real-Time Operating System (RTOS). Un-

fortunately, this patch is not available for the last AT91 supported kernel version and the tests made with

cross versions have shown a heavy system performance penalty.

It was thought that a Delay Tolerant Network solution over the COM subsystem may be useful for a

future Inter-Satellite Links usage. Three different implementations were tried, DTN2, IBRDTN and ION.

The DTN2 was infeasible to utilize on top of the designed system because it requires the OASYS library

which depends on TCL development version library. This TCL library is not ported to the buildroot pack-

ages, so the attempt to port it as buildroot failed due to the lack of available storage. The IBRDTN was

also not suitable since it requires the C++ support aboard that also require too much storage availability.

The last attempt was the ION implementation. This last implementation is not ported for µClibc. With all

these issues the DTN implementation solution was abandoned. Clearly the lacking of available storage

on-board leads to a more requirement-oriented protocol design leaving out this extra ISL functionality.

The COM performance tests suggests that maybe more energy consumption can be saved if the

processor was less powerful, since it is underused by the entire deployed software solution. But, if the

DTN idea for ISL remains a open question for future ISTNanosat-1 developments, more CPU power and

storage memory is required to host the actual DTN implementations demands. These implementations

are not well supported by real embedded system infrastructures yet. To use for example, IBRDTN the

COM operating system should be the OpenWRT where this implementation is well ported. This forces

the COM OS to run a more common OS in order to run these actual DTN implementations.

The test chapter addressed the safety and quality aspects of the developed work. It states that the

final solution fit on the proposed tight requirements. The most problematic requirement was the energy

consumption. The energy available influenced almost every decision taken on this work. The final

Heart solution roughly consumes 180mW if both subsystems are operating at same time. This power

consumption characteristic was mainly achieved by overall low resource usage.

One of the Heart major contributions was the development of the AX.25/CSP driver. This driver can

easily be integrated into another CSP based projects since it was developed as a CSP extension without

any extra software dependencies, except the AX.25-library. The T-CSP protocol was another achieve-

ment. This transparent API, abstracts all the underlying transport functionalities to the application. The

retransmission mechanism developed for this transport protocol proved that its use is time advantageous

over disruptive scenarios in common space-link bit-rates. The T-CSP also allows an orbit-aware retrans-

1https://rt.wiki.kernel.org/index.php/Main_Page
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mission mechanism. To enable all the AX.25 network stack inside the COM subsystem two buildroot

packages were developed and are widely available. These packages automates the compilation, patch-

ing and installing of theAX.25-library and AX.25-tool inside the buildroot infrastructure. These can be

useful for another radio embedded systems that needs AX.25 support, for example a portable Software-

Defined Radio device. Another major contribution is the FreeRTOS port for the moteists5++ platform,

which relies on a free and opensource toolchain (GCC). This port allows a complete usage of all moteist

capabilities since this development chain does not restrict the amount of code produced (the commercial

toolchains do).

The developed Heart unit relies on a external redundant profile switching. This complex task can

be achieved on future developments to ensure a complete power-aware on-demand satellite function-

alities. The entire solution also needs to be subjected to a more realistic test scenario to attest the

observed performance and quality results. Another interesting future study might be how can a more

common hardware/software platform be energetically efficient and at the same time support the actual

ideas for ISL using some DTN implementation. Finally, the security issues are still an open question.

Future developments can use the CSP intrinsic security mechanisms to employ e.g. remote command

authentication, avoiding unauthorized satellite interaction.
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A
Software installation guide

A.1 COM Operating System installation and tailoring

A.1.1 Cross-compile enviroment

In order to cross-compile the Linux kernel on a x86 host machine is necessary to have an ARM-

enable toolchain which provide all the needed tools (compilers, assemblers, linkers, etc.) to produce

ARM-based binaries. This toolchain can become available on a Debian machine by installing the apt

packages described on Fig. A.1.

$sudo apt-get install linux-libc-dev-arm-cross gcc-4.6-arm-linux-gnueabi-base

$sudo apt-get install libc6-arm-cross libc6-dev-arm-cross

$sudo apt-get install uboot-mkimage

Figure A.1: Installation of cross-compilation tools on a x86 Debian host
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A.1.2 COM base system

With the toolchain installed on host system, the Linux/ARM kernel can be compiled in a quasi-

standard way, like:

1. ~/linux-2.6.38$ patch -p1 < 2.6.38-at91.patch

2. ~/linux-2.6.38$ make ARCH=arm at91rm9200dk_defconfig

3. ~/linux-2.6.38$ make ARCH=arm menuconfig

4. ~/linux-2.6.38$ make ARCH=arm CROSS_COMPILE=arm-linux- uImage

Figure A.2: Linux/ARM kernel cross-compilation on a x86 Debian host

On the first step in the Fig. A.2 above, the AT91 patch is applied to the code. It makes the proper

changes (step 2) to the Linux kernel in order to support the AT91RM9200 MCU and the intended periph-

erals. The configurations and the code modifications made by this patch are not enough to full fill the

required COM architecture.

The last step on Fig. A.2 (step 4) finally builds the kernel targeting the ARM architecture, producing

an uImage file. This uImage is a typical kernel image (bzImage) but converted using the uboot-mkimage

tool. In this uImage format, the Linux kernel image is ready to be used on the U-boot loader.

In order to build a fully parametrized ARM-based rootFS, the buildroot1 infrastructure was used. The

Fig. A.3 shows the fundamental required steps in order to configure and compile the rootFS image:

1. ~/buildroot-2012.05$ make menuconfig

2. ~/buildroot-2012.05$ make

Figure A.3: COM rootFS cross-compilation targeting ARM architecture

On the first step in the Fig. A.3 the framework will pop-up an GNU ncurses/dialog based menu, where

the different buildroot configurations can be done. Finally, the step 2 on the Fig. A.3 will produce a 1.5

Mbyte final image on buildroot-2012.05/output/images/ path.

The required u-boot configuration are the follows:

The first two configuration directives copy the kernel and rootFS images from flash memory to SRAM

using the proper memory locations. Note that 0xC0 is the flash and 0x21 is the SRAM regions. The

third directive is the boot arguments that are passed to the Linux kernel indicating from where it should

load the rootFS image (0x21118f0b0 in this case). Another extra options are also passed such as the

1http://buildroot.uclibc.org/
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1. kernelMove=cp.b 0xC0000000 0x21000000 0x18f0a0

2. userlandMove=cp.b 0xC018f0b0 0x2118f0b0 0x1c4a1b

3. bootargs=root=/dev/ram rw initrd=0x2118f0b0,10m ramdisk_size=15360 console=ttyS0

,115200 mem=32M

4. bootcmd=run kernelMove; run userlandMove; bootm 0x21000000

Figure A.4: Das U-boot configuration directives

debug console device (ttyS0) and its baudrate. Finally, on step 4, the bootcmd directive instructs the

bootloader which are the required steps with its respective execution order. The last instruction on this

step 4 will trigger the entire system boot by executing the loaded Linux kernel.

The original AX.25-library and AX.25-tools source code use the GNU autotools as standard com-

pilation process. After that, the ax25-lib package was incorporated into the buildroot infrastructure by

adding it to the Config.in meta-file in packages/ branch. The Fig. A.5 shows the created .mk file major

contents, for AX.25 library.

LIBAX25_VERSION = 0.0.12-rc2

LIBAX25_SOURCE = libax25-$(LIBAX25_VERSION).tar.gz

LIBAX25_SITE = http://www.linux-ax25.org/pub/libax25/

LIBAX25_INSTALL_STAGING = YES

LIBAX25_INSTALL_TARGET = YES

$(eval $(call AUTOTARGETS,package,libax25))

Figure A.5: Buildroot AX.25-library mk package

The meta-information included in this mk file will be used by the buildroot infrastructure to automat-

ically compile and install the AX.25-library into the rootFS output image. The mk file have the original

library code location on the web together with its version. The buildroot process to install this library into

the system will perform the following tasks:

1. Read the meta-information on the package mk file;

2. Fetch the original library code based;

3. Apply the code correction patch to make the original library code compatible with the buildroot

infrastructure;

4. Compile the library, invoking the autotols buildroot macro (last line in Fig. A.5);

5. Install the library in the rootFS file.
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With this AX.25 protocol full enabled on the rootFS, the embedded system can now configure its se-

rial line to be used as AX.25 interface. To do this, the following line was added to the /etc/ax25/axports

configuration file:

spacelink CS5CEP-11 9600 255 2 SAT to GS Link

Figure A.6: AX.25 axports configuration file contents

This configuration line contains the serial connection name, the AX.25 callsign associated with the

embedded system, the serial line baudrate (9600 bit/s in this case), max frame size and frame transmis-

sion window (which both can be ignored when UI frames are used) and a connection description. After

the configuration setup, the command described on Fig. A.7 apply it to the kernel logic network interface.

/usr/sbin/kissattach /dev/ttyS0 spacelink 10.10.10.10

Figure A.7: Apply axports configurations to logical AX.25 interface

The kissattach command tells the kernel which physical interface should be used to send/receive

the encoded AX.25 frames (ttyS0 in this case) and the correspondent configuration line on axports file

(spacelink configuration in this case). The IP address as last arguments, is only intended for IP over

AX.25 networks thus can be ignored in this scenario. After this command, the kernel generates a logic

interface (e.g. ax0) that can be directly used as a typical Berkeley socket API together with the installed

AX.25-library. All the developed communication services rely on this kernel logical interface, to perform

the AX.25 UI framing process.

A.1.3 PriSIS interface interaction

Fig. A.8 illustrates the highlighted code on the developed GS side software, which implements the

same Berkeley socket, but for receiving the AX.25 UI frames. After the corrected frame reception, its

payload is ready to be decoded/parsed.

1. s = socket(PF_PACKET, SOCK_PACKET, htons(proto))

2. size = recvfrom(s, buffer, sizeof(buffer), 0, &sa, &asize);

Figure A.8: Receive data using Berkeley AX.25-based socket
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A.2 Additional notes on complexity

A.2.1 PriSIS and pulsar compilation

The buildroot infrastructure was configured to produce a parametrized rootFS image serving as un-

derlying platform together with the Linux ARM kernel for the developed software - PriSIS and pulsar.

After the rootFS compilation it was necessary to cross-compile and install this two software compo-

nents (PriSIS and pulsar) inside the generated buildroot image. To automate this entire process, the

configureImage shell script was created. The major steps performed by this tool can be summarized

as follows:

1. Open the produced rootFS image, decompressing and mounting it;

2. Copy the AX.25 configuration files and startup scripts that will run both PriSIS and pulsar on system

boot;

3. Cross-compile to ARM architecture and install the libcsp library with the new AX.25 driver inside the

rootFS image. Note that this EABI-based cross-compilation was done using the buildroot toolchain

using:

--toolchain=buildroot-2011.11/output/host/usr/bin/arm-linux and --enable-if-ax25 as

new waf script parameter. Recall that this toolchain will use the µClibc library.

4. Compile the PriSIS-ARM together with the developed T-CSP library and linked with previously

installed on rootFS libax25 and libcsp. Note that libax25 was previously complied and installed

using the developed buildroot libax25 package

5. Copy the resultant binaries (PriSIS-ARM and pulsar-ARM) into the rootFS image;

6. Unmount and compress back (with bzip2 algorithm) the final rootFS solution, ready to be burned

into on-board flash memory.

A.2.2 COM flash memory programming

In order to program the COM board with the developed software an Trivial File Transfer Protocol

(TFTP) server was created on hos system (outside the embedded system). This TFTP server stored

the intended COM flash embedded files (rootFS image and kernel image). Using the bootloader TFTP

client capabilities each image is copied from the external TFTP server to the on-board RAM, which are

later burned into the flash memory. This was the best way found to pass the developed software to the

COM subsystem.
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