
1

ISTNanosat-1 Heart
Processing and Digital Communications unit

João André Henriques Ferreira
joaoahferreira@ist.utl.pt

Under supervision of:

Prof. Doutor Rui M. Rocha
Prof. Doutor Moisés Simões Piedade

Instituto Superior Técnico / TULisbon
October 2012

Abstract—The ISTNanosat-1 is a double CubeSat which is being developed by students and teachers from
IST/TULisbon. The Heart unit, whose software was developed in this dissertation, presents a solution to manage
the remote interactions with the Ground Station through the space-link. This unit is also responsible for satellite
housekeeping. The solution comprises two different subsystems: Digital communications and Command & Data
Handling.

The digital communication subsystem implements the required network functionalities e.g. allowing a ground operator
to invoke remote commands in a reliable way onto a specific subsystem or in the satellite as a whole. This subsystem
also provides the satellite general health status information (telemetry) periodically in the downlink taking into account
maximum Ground Stations compatibility. Since the ISTNanosat will carry a tiny camera aboard, the Communications
solution also implements a transport protocol that enable the imagery transmission from the spacecraft, abstracting
all the details on this process. All the network functionalities were implemented taking into account the intrinsic
characteristics typically found on Low Earth Orbit space-links such as: intermittent and disruptive connections; low and
very asymmetric throughputs.

The Command & Data Handling is a critical subsystem due to its responsibilities as the on-board information
orchestrator. To enhance its operation correctness it relies on a Real-Time Operating System to implement the satellite
housekeeping and internal communications tasks when it enters in the safe-mode profile.

Finally, the Heart unit solution was deployed using a AT91RM9200 and the moteISTs5++ as prototype platforms. The
final solution was submitted to a set of performance and quality tests highlighting the solution compact design, low power
consumption and ARM processor under-utilization even in stressful cases.

Index Terms—ISTNanosat, Cubesat, embedded systems, space communications, redundant subsystems

F

1 INTRODUCTION

S PACE exploration is always related with
large investments from governments

and/or private institutions. This represents
a limitation to technological advances, since
the development is confined to some entities.
In mid-1960 the Orbiting Satellite Carrying
Amateur Radio (OSCAR) group was created,
having as a major goal the construction and

launch of amateur satellites. Two years later,
the first amateur satellite called OSCAR I was
launched. In 1969, the OSCAR project merged
with COMSAT Amateur Radio Club, forming the
Radio Amateur Satellite Corporation - also known
as AMSAT - thus enabling the OSCAR 5 launch
[1]. In 1981 the UO-9 - UoSAT-OSCAR 9 - or
University of Surrey’s UoSAT-1 was launched.
This satellite marked the beginning of a new
era in which universities are the main sources



2

of funding of these amateur projects [1] [2].
Since then, dozens of projects have been
developed within the academic community. It
is estimated that, on average, 12 satellites are
launched by universities per year [2].

In 1999 the CubeSat project was started.
This collaborative project, initially between
the California Polytechnic State University (Cal
Poly) and the Standford University’s Space
Systems Development Laboratory (SSDL),
aims at the standardization of pico-satellites
design. This standardization increases the
space accessibility by allowing cost reduction,
development time decrease, and keeping
frequent launches. A Cubesat is a cube with
10cm - (10x10x10cm) with up to 1.33kg - or
1U [3]. These cubes, can be grouped easily
in order to form larger satellites, for example
2U (10x10x20cm) or 3U (10x10x30cm). It is
estimated that in 2010, 250 CubeSats were built
in 1U, 2U and 3U formats [4]. The satellites
developed under this specification - CubeSat
Design Specification (CDS) - in addition to
carry all necessary technology to its orbit
operation, can be designed to transport more
specific scientific experiments. One clear
example is the NASA GeneSat-1, which has
a bacteria miniature laboratory inside with
the capacity of detecting proteins - products
of specific genetic activity [5]. CubeSats are
commonly delivered in LEO1, defined as
160-2000km above the Earth’s surface [6].

Apart from the CubeSat community
developments, other working groups have
been formed in order to solve more generic
problems. For example, to address the
problems associated with long distance
communications, keeping in mind the
lack of efficiency of terrestrial protocols
in such scenarios, new communication
paradigms were forced to emerge; a very
significant example is the Delay Tolerant
Network (DTN). This new communication
approach, has been catapulted by the Delay
Tolerant Networking Research Group2. The DTN

1. Low Earth Orbit
2. http://www.dtnrg.org accessed on 15-09-2012

proposed architecture is an evolution from
the initial proposed (InterPlanetary Network)
IPN Internet architecture [7]. ”The IPN is
a member of a family of emerging Delay
Tolerant Networks” [8]. The Internet Society
IPN Special Interest Group3 is responsible
for IPN developments. The IPN is already
included in the NASA Mars mission program [9].

In 2010, the ISTNanosat-1 project was
born, presenting itself as a candidate to be
the first Portuguese satellite entirely made
inside an academic context. In this project,
minimum use of Commercial Off-The-Shelf
(COTS) components is planned or, in other
words, preference will be given to academic
developed technology. This nano-satellite4 will
be built under CubeSat specifications in a 2U
structure. Some technology has already been
engineered by researchers and students from
IST. In this context, there arises the need for
an orchestrator which is designated as Heart
unit.

The Heart unit is responsible for for
both digital communication processing and
central decision logic orchestration. The
whole solution encompasses two different
subsystems, the Command and Data Handling
(C&DH) and the Digital Communications
(COM). The C&DH subsystem is responsible
for processing data gathered from on-
board components, such as magnetometers,
sun sensors, gyroscopes etc., while the
COM subsystem is responsible for digital
communications through the space-link -
connecting the satellite with the Ground
Station (GS).

Taking into account the large budget
involved in a spatial project, it is necessary
to develop very robust and reliable systems,
in order to avoid jeopardizing the entire
investment due to a particular component
fault. With this requirement in mind, the
Heart module architecture needs to be
redundant. The entire solution, needs to be

3. http://www.ipnsig.org accessed on 15-09-2012
4. Satellite with a wet mass between 1 and 10 kg



3

adaptable enough to allow different faulty
scenarios, in order to keep the general satellite
performance as good as possible, avoiding
that specific faults can turn into global failures.
Beyond the imposed constraints to this space
navigation device, it is important to endue
the communications with tolerance to delay,
disruptions, lack of bi-directionality or highly
asymmetric links, etc..

In this article we start by detailing the
conceptual view of our Heart unit architec-
ture. Next, we address the issues related with
hardware and software implementations fol-
lowed by the discussion on the results obtained
through experimental evaluation. We close by
drawing some conclusions.

2 HEART DESIGN

ISTNanosat-1 Heart is the satellite central
intelligence unit. It is responsible for
onboard data processing and handling
the communications with Earth Ground
Stations. It may be able to run the necessary
procedures for satellite housekeeping and
other functional tasks. These procedures can
be, for example, image gathering, collect
internal system performance information, or
inject well formatted telemetry information
into the radio link.

The Heart unit architecture comprises two
processor boards and the corresponding
software running on top of them. The COM
subsystem is responsible for processing all
in/output space-link digital data and to route
some information to another subsystems
like the C&DH. The C&DH subsystem
is responsible for satellite housekeeping
tasks and for the safety-critical operational
decisions as well as the remaining subsystems
management. This subsystem must have
an ultra low power consumption profile to
allow basic satellite operation when facing
unfavourable scenarios.

Both subsystems are connected to the Analog
COM subsystem which is responsible for the

following functions: Data Framer, which imple-
ments a basic network stack in hardware that
conceals from the remaining subsystems the
intrinsic protocol mechanisms like handshakes,
signalling, retransmissions, etc.; and the Mo-
dem. The C&DH subsystem being less power-
ful is connected to the Data Framer avoiding
network stack processing, when the satellite
enters in the safe mode. The satellite runs in
this profile when the spacecraft suffers some
problem, or simply when it needs to save more
energy. Also, when such scenario occurs, the
COM subsystem is disconnected. When the
satellite operates with no problems and enough
energy, it works in the normal-mode profile,
where both subsystems are connected. Within
this profile, the COM is directly connected
to the Modem, implementing by its own the
network functionalities and the C&DH can
process its housekeeping tasks without worry
about space-link communications.

2.0.1 Digital communication subsystem
The first design issue regarding this subsystem
concerns the necessary processing power to
support the demanding functionalities, such
as receive the GS commands and ensure its
reliability, send the telemetry beacon and al-
low the imagery transmission to Earth. These
functionalities require interaction with different
types of interfaces and processing space-link
network protocols. Fortunately, all these func-
tionalities share a common behaviour: a heavy
but sporadic energy consumption. From all the
available power allocated to the Heart unit
(950mW), the COM subsystem will have ∼ 80%
of it. This 80% is a rough estimation based on
the foreseen high demanding requirements in
terms of processing power, e.g. space-link net-
work stack processing and remote command
execution. This power budget allows the uti-
lization of a general purpose MCU. Such MCU
permits software flexibility in terms of code re-
utilization, e.g. from open-source community,
and a more wide spectrum choice of possible
OS types and operational philosophies. The
selected CPU architecture was a 32-bit ARM
due to its power efficiency characteristics and
global support from many embedded systems
vendors. The ARM also incorporates a MMU,



4

which allows the use of popular OS such as
Linux.

2.0.2 Command and Data Handling subsys-
tem
The C&DH subsystem is responsible for satel-
lite housekeeping tasks and for the safety-
critical operational decisions as well as the
remaining subsystems management. This sub-
system must have an ultra low power con-
sumption profile to allow basic satellite oper-
ation when facing unfavourable scenarios. For
example, if Electrical Power Subsystem (EPS)
batteries are defective or long eclipse periods
occur, the C&DH can keep the basic satel-
lite functions: maintain attitude and teleme-
try transmission and simple remote command
reception. The C&DH gets the remain Heart
unit power budget, roughly 15% (150mW). To
meet this requirement, the ultra low power TI
MSP430 architecture was selected. This MCU,
one of the best options when low power con-
straints are envisaged, allows operation in dif-
ferent Low Power Modes (LPM) which brings
a useful way to employ energy-aware software
solutions.

2.0.3 Communication protocols
Taking into account the communications
requirements, specially those concerned with
the need for a reliable remote command
operation, the possibility to transmit images
from the satellite and the telemetry service,
some conceptual decisions were made in the
design of the communication protocols.

Fig. 1 describes the protocol architecture
involved in the space-link. The beacon service
directly uses the AX.25 layer 2 protocol
[10], because it is a very simple service.
The reliable remote command service uses
the Cubesat Space Protocol (CSP), which is
later encapsulated over AX.25 frames. To
ensure the imagery transmission to the GS
a new tolerant transport protocol designated
as Tolerant-CSP (T-CSP), is used. All these
services are implemented in a module called
Primary Satellite Interface Software (PriSIS)
which runs on top of the COM Operating

System. This very important application serves
as the satellite data gateway when the satellite
runs on the Normal profile.

Fig. 1. Communication options available in
C&DH and COM.

Telemetry - The first protocol design decision
had the specific objective of maximizing the
number of potential GS on Earth that can
receive the broadcast of this basic health
satellite information (telemetry). To achieve
this compatibility one widely deployed
protocol must be used to ensure, as much as
possible, the communication standardization.
The protocol used for digital telemetry in the
downlink (satellite to GS) is the AX.25, using
exclusively Unnumbered Information (UI)
frames.

The telemetry information is directly
encoded into the AX.25 UI frame payload
in a human-readable format (ASCII). Every
piece of telemetry data is delimited by a
special character ’:’. Any kind of information
with dynamic size can be encoded using this
special character approach. The receiver does
not need to know a priori each field length; it
must know, however, the information format
semantics.

Remote command reception and processing
- The remote task invocation from GS operators



5

on Earth raises a problem since each command
can have other subsystems (rather than COM)
as destination. To address this functionality
the CSP protocol is used. In this solution, the
CSP packets are encapsulated using AX.25 UI
frames. The utilization of this layer 2 protocol
under CSP enhances the error resilience by
forcing a maximum CSP packet length (CSP
have variable length packets) and providing
error detection using its FCS mechanism.

Imagery gathering - In order to allow
the correct transmission of onboard images,
a layer 4 protocol must be employed. The
rationale behind the use of such a transport
protocol is the lack of available payload inside
a CSP packet, due to the imposed AX.25
MTU restrictions. Every image with more
than 253 bytes5 needs to be fragmented into
multiple CSP packets. This segmentation
process also needs to take into account
an efficient mechanism for missing packet
retransmission, to overcome the issues
imposed by a particular segment loss in
the downlink. Since the CSP protocol does
not have one transport layer implementation
that performs fragmentation and packet
recovery, a new solution called T-CSP was
engineered. The Tolerant prefix has to do with
the underlying asynchronous transmission
mode provided by the AX.25 UI logic. This UI
mode is very useful here as it does not have
any time-based constraints. Thus, the segment
transmission process can proceed continuously
without any acknowledgement. The T-CSP rely
on a Selective Negative ACKnowledgment
(SNACK) logic to ensure packet recovery.
The SNACK approach is adequate for this
particular scenario because the space-link
may suffer from high throughput asymmetry
and delay. This asymmetry tends to be
favourable (more throughput) for downlink,
being important to use a parsimonious ACK
mechanism to avoid the utilization of the
uplink channel, as much as possible. This
SNACK mechanism is implemented in the
following conceptual way: After the PriSIS
receives a request for file transmission, it

5. 256 bytes AX.25 MTU value and 4 bytes CSP header

starts sending each segment sequentially over
the space-link. After each correct segment
reception in the GS, the T-CSP checks if x
previously segments were already correctly
received; if not, it asks PriSIS for those missing
segments. This process continues until all
segments are correctly received allowing the
image to be e.g. correctly displayed to the GS
operator.

In Fig 2 the T-CSP segment format is shown,
where 8 bits are allocated for file identification,
16 for segment number and another 16 for total
segments in the file being transmitted.

Fig. 2. T-CSP segment over CSP packet

3 HEART IMPLEMENTATION

Here we consider the different applications
developed in each subsystem and the
corresponding system’s software that supports
it.

To enable the software development for both
subsystems, two different rapid prototyping
boards were used. In what concerns the COM
subsystem, an AT91RM9200 based board was
utilized, namely the AT91RM9200-DK board.
This board has an ARM920T CPU core run-
ning at 180MHz, and enough peripherals and
interfaces for the COM, such as 10 Mbyte
flash, I2C and SPI. For the C&DH subsystem
the software prototyping board used was the
moteISTs5/1011. This homebrewed platform is
equipped with a TI MSP430F5438A MCU. This
ultra-low power micro-controller relies on a 16-
bit CPU running with a 25 MHz system clock.
It also has all the required interfaces such as
I2C, and provides different operational modes
in terms of energy consumption.



6

3.1 COM base system

The COM operating system includes three
different components: the boot-loader, the
Linux Kernel and the userland environment,
also known as root FileSystem (rootFS). The
first implementation issue was what would
be the best approach capable of minimizing
the hardware resources and, at the same time,
enabling a versatile platform for the PriSIS
module. The system used was the Buildroot6,
which allows a complete embedded system
parametrization through a set of meta-
information files (e.g. Makefiles and patches).
It also provides a simple approach to new
developed software integration in a portable
way. With this in mind, the buildroot seemed
to be a reasonable choice for the rootFS.

The Linux kernel version used was the
2.6.38 vanilla source7. This version was used
mainly because this is the last kernel version
where it is possible to apply the AT91 support
patch8. This patch is important because it
enables/enhances the support of some of
the required AT91RM9200 MCU hardware
on Linux. Those features are related with
e.g. DataFlash operation, I2C and SPI bug
corrections. The Linux kernel provides an
important feature for the COM subsystem
which is the the native AX.25 support as a
loadable kernel module. This kernel module
implements all the required AX.25 framing
functions.

To enable the interaction with the exported
AX.25 kernel driver functionalities from user-
land, the AX.25 library and AX.25-tools9 are
required. Since this software is not currently
automatically supported by the buildroot pack-
ages, it was necessary to extend the build-
root framework to support the AX.25 proto-
col by creating the required buildroot pack-
ages. A buildroot package is composed by
a set of patches and meta-information. The
package is later integrated into the buildroot

6. http://buildroot.uclibc.org/
7. Unmodified kernel source from kernel.org
8. http://maxim.org.za/at91 26.html
9. www.linux-ax25.org

package system to allow the required software
to be compiled together with all the remain-
ing rootFS software. The resulting final rootFS
image takes ≈ 1.5 Mbyte of storage capacity
where the Linux/ARM kernel image occupies
around 1.55 Mbytes.

3.2 Beacon software and Primary Satellite
Interface Software

Here, we highlight the most important imple-
mentation strategies and decisions taken on
both the beacon software and PriSIS. Fig. 3
shows an overview of the entire PriSIS solution.
The discussion follows a bottom up approach
in terms of network layers.

Fig. 3. Complete network stack overview

The onboard beacon software (designated
as pulsar) is a daemon process that injects into
the downlink, thanks to the AX.25-library,
the available information about the current
satellite health. The pulsar daemon uses the
berkeley socket standard primitives to inject
the collected telemetry into the AX.25 kernel
module.

The PriSIS implements the command
reception/response and imagery gathering
functionalities, using the CSP and T-CSP



7

protocols. It must implement the command
reception/response mechanism over the CSP /
AX.25 network stack. The CSP implementation
does not support the AX.25 protocol. To
overcome this lack of interoperability one
CSP-AX.25/UI driver was created and added
to the libcsp10 implementation.

The native CSP implementation smooths
the code compilation/configuration process
through a waf script11. In addition to the new
AX.25/CSP code that was integrated into the
native csplib, the waf script was also extended
to include this new AX.25 support. Therefore,
no extra step is required when the csplib needs
to be compiled with a AX.25 support.

One GS application was also developed to
allow the interaction with PriSIS by a remote
GS operator. This solution also implements
the same CSP/AX.25 stack as PriSIS does.
After being initialized, the GS software asks
the operator for a command which will be
properly encoded and sent to PriSIS.

The GS software also allows the operator to
ask for imagery transmission. This function
will be encapsulated as a normal CSP
command. After this command is correctly
received by PriSIS, it will trigger a T-CSP
transmission, sending the onboard saved
image to the GS. The T-CSP protocol is
an extension to the already implemented
CSP/AX.25 stack functions. It relies on the
already developed primitives adding the new
fragmentation and recovery functionalities.

3.3 C&DH Operating System and applica-
tions
Due to the real-time constraints associated
with typical C&DH tasks, a RTOS (FreeRTOS)
was considered in this case. The FreeRTOS
for MSPGCC toolchain is being ported to the
MSP430F5438A MCU by the FreeRTOS project.
This common available port12 was tailored

10. https://github.com/GomSpace/libcsp
11. http://code.google.com/p/waf/
12. https://github.com/pabigot/freertos-mspgcc

to support the moteist++s5 platform. Since
FreeRTOS code structure uses a Hardware
Abstraction Layer (HAL) to implement
the platform specific code, which is MCU
independent, a new moteist++s5 HAL for
FreeRTOS was created. This new FreeRTOS
moteists5++ HAL contains the major platform
configuration and the external peripherals
functions implementation.

With the required moteIST I/O peripherals
supported in FreeRTOS, the real-time applica-
tion can be deployed. The developed applica-
tion implements the redundant beacon func-
tion as well as the incoming I2C data processing
(e.g. from the COM subsystem). Beyond these
functions, the application also receives simple
serial commands from the Analog COM sub-
system, namely the Data Framer component,
replying with an ACK message if the command
is correctly received.

4 EXPERIMENTAL EVALUATION
In order to validate the reliability, functionality
and quality of the developed solution, one set
of tests were performed for the Heart Unit.
Since the Analog COM subsystem is currently
under research and the intended radio link
characteristics are difficult to emulate in the
laboratory, the space link was abstracted using
a serial connection from the GS computer to
the COM subsystem. The same method was
also applied to interconnect the C&DH sub-
system with the GS computer. The lack of
realistic physical conditions on this important
link, makes the test accuracy hard to achieve.
The test design phase had this fact into ac-
count together with the requirement specifi-
cations, specifically the safety-critical points,
and produce two main test groups. On one
hand, the first test group aims at the solution’s
performance evaluation, where both base sys-
tems (C&DH and COM Operating system) and
intended network-based functionalities were
evaluated. On the other hand, the second test
group targets the solution quality validation
for safety-critical environments. This second
test group was formalized taking into account
some directives found on NASA Software Safety
Guidebook (GB-8719.13) [11].



8

4.1 COM subsystem
As Fig. 4 shows, the total required flash stor-
age space is 3.6 Mbytes. This information was
collected from the boot-loader memory orga-
nization. The COM software systems roughly
takes 37 seconds to be launched when electrical
energy becomes available.

Fig. 4. Flash memory occupation

From all the SRAM available (roughly
32Mbytes) only 43% (12.6 Mbyte) is occupied
when the subsystem is idling.

The next test consists in consecutive com-
mands issued by the GS operator. Fig. 5 shows
that SRAM utilization starts increasing but, at
some point in time, seems to stabilize around
the 55%. This stabilization gives a clue that
there are no memory leaks on the PriSIS code.

Fig. 5. RAM utilization over continuous com-
mand handling

The same behaviour is observed for the load
values in Fig. 6. As long as more and more
GS commands arrive at PriSIS, it requires more
processing power to deal with them, thus rais-
ing the load values to around 65% of CPU
utilization.

Fig. 6. CPU loads over continuous command
handling

This high stressful scenario, which is
unlikely to happen in a real-world setting, it is
not yet the killer application in terms of COM
processing power and memory characteristics.

Another aspect that was taken into account
was the developed T-CSP time efficiency. Fig. 7
shows how much time T-CSP takes to transmit
a set of segments when some disruption occurs
in the space-link. This test was performed,
using a 1200 bit/s serial connection for two
possible different window verification sizes
(x = 1 and x = 513). These two sizes were
chosen as a way to produce an evident contrast
between these opposite (minimum and large)
window sizes. The T-CSP receiver (GS on this
case) timeout was configured to be 2,1 seconds
since the frame time (with maximum payload)
is about 1,8 seconds. The abscissa axis in
Fig.7 represents the number of lost segments
during multiple file transmissions. These lost
segments were originated by unplugging the
serial cable during multiple file transmissions,
each transmission with different number of
lost segments. The ordinate axis represents
the time spent by T-CSP to transmit a sample
image with ≈18 Kbytes which require 75
segments.

As Fig.7 illustrates, the lowest window ver-
ification size (x = 1) is more time efficient
with these low bitrates. It is also possible to
conclude, that the minimum time required to

13. x is the missing segment window size that reflects the
maximum number of unreceived segments in a burst segment
transaction and relative to the last correctly received segment.



9

Fig. 7. File transmission at 1200 bit/s using T-
CSP facing link degradation.

receive this 75 segment sequence at this bitrates
is a little less than 3 minutes. It is also clear
that for x = 1, in the worst case scenario
(when almost all segments are lost - 74 in this
case) is still advantageous the use of the T-CSP
retransmission, rather than ask for the entire
image retransmission. This efficiency gain re-
garding the x = 5 window as to do with less
uplink utilization and fastest missing fragment
verification on the GS software. With x = 1
the PriSIS buffer do not overflow, which also
makes the entire retransmission faster. Finally,
it is worthwhile to note that a typical satellite
orbit with 20 minutes of communications op-
portunity will allow the transmission of about
500 segments (≈ 120 Kbyte of effective data) in
good propagation conditions.

4.2 C&DH subsystem
The C&DH subsystem is difficult to test since
it is a highly integrated platform. Unlike the
COM, the C&DH does not have an intrinsic
performance report mechanism (as the teleme-
try beacon on COM). The entire C&DH soft-
ware solution (FreeRTOS OS, HAL functions
and C&DH application code) uses 7 Kbytes
(2.7%) of the 256 Kbyte available flash on the
MSP430F5438A MCU. This utilization is ac-
ceptable and does not limit future C&DH soft-
ware enhancements. Besides the Flash memory,
the C&DH software RAM utilization is hard to
evaluate in compile time. This C&DH solution
utilizes at least ≈ 10.6Kbytes of RAM. This
represents 66.25% of all the MCU available
RAM (16Kbytes).

4.3 PriSIS and beacon software
safety/quality
The most important software applications
developed for the Heart unit were the PriSIS
and the beacon software aboard the COM
subsystem. As such a larger test effort was
employed on these software components to
ensure its quality and reliability. The first
test was the code visual inspection, taking
into account the guidelines, precautions and
standard verification processes found on [11,
p. 214-218]. These guides state the limitations
and problems with C language, programming
C standards and the ten commandments for C
programmers. This document also provides a
”Good Programming Practices Checklist” [11,
p. 384-388].

Beyond the visual and conceptual code ver-
ification test, two group of tests were per-
formed. These tests are grouped into statical
analysis, which are done against the source
code without executing the produced binaries,
and dynamic analysis which are performed
while executing the compiled binaries. The first
static analysis tool used was the intrinsic GCC
compiler warning enforcement. After this, the
code was also inspected using a lint program
called splint14. This static analysis tool reported
some possible errors in the produced code. In
the dynamic analysis test group, the valgrind
tool was used to inspect about code runtime
memory leaks and profiling.

5 CONCLUSION

The developed Heart unit presents a
solution capable of handling the space-link
communications between the ISTNanosat-
1 and potential Ground Stations on Earth
(Communications subsystem). It also presents
an ultra low power solution capable of acting
as the satellite central decision unit (C&DH
subsystem). Both solutions were engineered
taking into account the low space and power
budget available on-board. Actually, these
Cubesat intrinsic restrictions shaped the entire
hardware and software developments. On one

14. http://splint.org/



10

hand, to meet the Heart unit requirements
for the Communications subsystem it was
necessary to fully parametrize a GNU/Linux
Operating System trying to minimize as much
as possible the scarce on-board resources
utilization. On top of this GNU/Linux
OS it was developed the communications
software (Primary Satellite Interface Software)
which implements the space-link network
protocol details. The developed protocols
allow a GS compatible telemetry beacon
transmission, command reception from GS
providing the required acknowledgements and
imagery transmission from the CubeSat. This
PriSIS software implements the developed
Amateur X.25/Cubesat Space Protocol driver
as well as the new transport protocol called
Tolerant-CSP. On the other hand, to meet
the C&DH subsystem requirements it was
necessary to port the FreeRTOS version
for TI MSP430F5 MCU with the MSPGCC
toolchain for the moteists5++ platform. After
the moteists5++ FreeRTOS port was done,
it was developed an energy aware solution
which is capable of communicating with the
remaining subsystems using the system bus
and implementing, on future projects, the
intended decision making process, using the
deployed real time scheduler.

One of the Heart major contributions was
the development of the AX.25/CSP driver. This
driver can easily be integrated into another
CSP based projects since it was developed as
a CSP extension without any extra software
dependencies, except the AX.25-library. The T-
CSP protocol was another achievement. This
transparent API, abstracts all the underlying
transport functionalities to the application. The
included retransmission mechanism proved to
be advantageous in disruptive scenarios and
with common space-link bitrates.

REFERENCES

[1] M. Davidoff, The Radio Amateur’s Satellite Handbook, 1st ed.
Newington: The American Radio Relay League, 2003.

[2] M. Swartwout, “The promise of innovation from
university space systems: are we meeting it,” in
Proceedings of the 23rd AIAA/USA Small Satellites
Conference, Logan, USA, 2009, pp. 1–6. [Online].

Available: http://www.usu.edu/ust/pdf/2009/october/
itn10120930.pdf

[3] S. Lee, A. Hutputanasin, A. Toorian, W. Lan, and
R. Munakata, “CubeSat Design Specification, Rev.
12,” 2009. [Online]. Available: http://www.cubesat.org/
images/developers/cds\ rev12.pdf

[4] A. Bonnema, “ISIS Missions, Services and Technology
Trends,” in CubeSat Summer Workshop, Logan USA, 2011,
p. 21.

[5] J. Bluck, “GeneSat-1 - Mission overview,” 2007. [On-
line]. Available: http://www.nasa.gov/centers/ames/
missions/2007/genesat1.html

[6] K. Woellert, P. Ehrenfreund, A. J. Ricco, and
H. Hertzfeld, “Cubesats: Cost-effective science and
technology platforms for emerging and developing
nations,” Advances in Space Research, vol. 47, no. 4,
pp. 663–684, Feb. 2011. [Online]. Available: http://
linkinghub.elsevier.com/retrieve/pii/S0273117710006836

[7] V. Cerf, Google/JPL, S. Burleigh, A. Hooke, L. Torgerson,
NASA/JPL, R. Durst, K. Scott, The MITRE Corporation,
K. Fall, Intel Corp, H. Weiss, and I. SPARTA, “rfc4838 -
Delay-Tolerant Networking Architecture,” 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4838.txt

[8] V. Cerf, “InterPlaNetary Internet,” in DARPA Proposers
Day, vol. 26, no. 6, Nov. 2004, p. 17. [On-
line]. Available: http://symoon.free.fr/scs/dtn/biblio/
Cerf-IPN-DARPA.pdf

[9] V. Cerf and I. Society, “rfc3271 - The Internet is for
Everyone,” 2002. [Online]. Available: http://www.ietf.
org/rfc/rfc3271.txt

[10] W. A. Beech, D. E. Nielsen, and J. Taylor, “AX. 25
Link Access Protocol for Amateur Packet Radio,” Tucson
Amateur Packet Radio Corporation, Tucson, no. July, 1998.
[Online]. Available: http://scholar.google.com/scholar?
hl=en\&btnG=Search\&q=intitle:AX+.+25+Link+Access+
Protocol+for+Amateur+Packet+Radio\#0

[11] NASA - National Aeronautics and Space Administration,
NASA Software Safety Guidebook (GB-8719.13), nasa-gb-
87 ed., 2004.


